

Short summary on the study of the ET Cryogenic Plant

Steffen Grohmann

Fulvio Ricci

Task Force Meeting -- April 7, 2025

Cryogenics for the L shape configuration

At the L vertex n. 6 Cryopumps, 2 Cryostats At each end n.3 Cryopumps, 1 Cryostat

Disclaimer: the inclusion in the project of addition cryopumps (shorter) is under study !!

Disclaimer: the inclusion in the project of addition cryopumps (shorter) is under study !!

Montecarlo results for LF vacuum

Cryopumps:

H₂O: 20 m left (Mirror back) + 10 m right (Mirror front)

H₂: 1 m left (Mirror back)

Pressure requirements fulfilled:

H₂: 3·10⁻¹¹ Pa, H₂O: 1·10⁻¹² Pa

Water ice build-up ~2 years for 1 ML

Credits S. Hanke

Heat load simulation

Cryopumps with baffles to avoid 80 K radiation onto 10 K mirror

Credits S. Hanke

ET-LF: role of the 10 K baffles

Credits S. Hanke

Disclaimer: Losses, thermal conductivity by supports and other details are not yet considered

Mirror with1% emissivity (99% reflectivity)	80 K system	3.7 K system	10 K system	Mirror (10 K)	Cryostat (2 K)	
System with10 K baffles in cryopumps	7.1 kW*	1.65 W	43 W	1.3 mW	263 mW	Impact of 10 K baffles on mirror load: reduction by factor 2.6
No baffles in cryopumps (80 K in simulation)	7.2 kW*	2.41 W	-	3.4 mW	892 mW	
Total value for ET-LF with baffles**	~52 kW	20 W	516 W	-	3.2 W	

*more real values reduced to ~60% via passive shielding between cryopump and beam pipe (theoretical 50% reduction by one passive shield layer, plus margin)

For the entire ET instrument **factor 12 this value of the LF region simulated here (4 LF regions per interferometer, triangle configuration means 3 interferometer)

Thermal load on:	ε of mirror	ε of mirror	ε of mirror	ε of mirror
	0.01	0.1	0.3	0.5
Mirror	1.3 mW	13 mW	37 mW	59 mW
Cryostat	262 mW	253 mW	232 mW	213 mW
3.7 K	1.65 W	1.65 W	1.65 W	1.65 W
10 K	43 W	43 W	43 W	43 W
80 K	7.1 kW	7.1 kW	7.1 kW	7.1 kW

The cryostat

Key features of the cryostat Bottom access Several layers of thermal shielding Vacuum separation between the upper warm tower and the cold cryostat External dimensions $\phi \approx 4.5 \text{ m} h \approx 6.4 \text{ m}$ Innermost shield h=3.8 m , φ =3.0 m @ 2K Payload 1250 mm height Mirror 550 mm diameter Cooling the shields 2 K → He II 5 K → He⁴ 50 - 80 K → Helium Gas exchange + Extra shields to insure superinsulation

Mirror @10/20 K: thermal links, path of vibrations and additional dissipation

ET – LF Payload

<u>Tomohiro Yamada Et al.</u> <u>Cryogenics</u> <u>Volume 116</u>, June 2021, 103280

> KAGRA study: stress changes the thermal conductivity

TL anchored to vibration dampers set inside the innermost shield of the cryostat

TLs with smaller spring constant k to reduce overall vibration transfer.

 $F \rightrightarrows^{k} (m_{L}) (m_{R}) (m_{$

Cryogenic Infrastructures

Baseline solution:

--Just 1 cryo-facility for each vertex based on the use of He fluid

Alternative approach -- KAGRA solution considered

Cooling Infrastructure based on Cryogenic fluids

[**] Busch L and Grohmann S, IOP Conf. Ser.: Mater. Sci. Eng. 1240(1) p. 012095, doi: 10.1088/1757-899x/1240/1/012095 (2022)

Cryogenic infrastructure concept [**]

- No underground LN2 (safety)
- One He refrigerator at each vertex
 - (Remote) surface compressors
 - Underground cold box
 - Interconnection box to several cryogenic supply boxes (1 for each tower/cryostat)
 - > Up to c. 500 m long transfer lines
 - 1-phase cooling for 80 K cryopumps/ outer shields
 - ➤ 1-phase cooling for 10 K baffles, 5 K inner shields and 3.7 K cryopumps
 - He-II payload cooling/inner shield

Summary for the civil infrastructure design

- Compressor hall on surface not far from the service pit of the each vertex: a mean size technical building (100/200 m² [??] equipped with a crane)
- Noisy room to host the old box (and other noisy devices even not related to cryogenics decoupled to the main cavern (50/100 m², 6 m height)
- Interconnection box near the cryostat
- Transfer lines between noiy room and iterconnection box up to 500 m

He plant: rough evalution of the electric power request In the case of the ET vertex in the triangular configuration

Total: ~ 1 - 1.2 MW

Total: ~ 500 – 600 kW

Total: ~ 250 – 300 kW

In the case of the L configuration these numbers must be divided

– by a factor 2 at the L vertex

Credits :

by a factor 4 at the interferometer end

Cryogenic Infrastructure planning

Additional cryopump evaluation in progress !!

- CERN contract tb. discussed/initiated by Project Office
- Needed to coordinate industry design studies

Technical expertise, manpower Reliable cost estimates

• No resources in ISB Division IV !

KAGRA cooling trategy: PT Cryocoolers

Pulse Tube nominal performances - CRYOMEC PT407 - 0.7 W@4.2 K -- 25 W @55K + compr. CPA 2870 → 7 kW PT410 - 1.0 W@ 4.2 K -- 40 W @ 45 K + compr. CPA 289 C → 7.9 kW PT420 – 2W@ 4.2k – 55 W @45 K + compr. CPA1114 - 11.4 kW PT425 – 2.7W@4.2 K – 55W@45 K + compr. CPA1114 → 12kW PT450 -- 5 W @ 4.2K - 65 W@ 45 K + compr. CPA3027 → 25 kW

 $COP_r \sim 10^{-4}@4 \text{ K} \rightarrow \sim 3 \times 10^{-3}@50 \text{ K}$ (COP_r - Coefficient Of Performance_{refrigeration})

Civil Engineering Impact of the KAGRA cooling strategy

✤ A cryoplant based on PTs asks for more than a factor 10 of electric power

- ➤ COP_r coefficient → <u>~</u>1x10⁻⁴ @ 4K, lower than a LHe plant Example of COP_r of He plants: LR70 system of Linde Kryotechnik AG T < 4.4 K COP_r ~ 1.7 x10⁻³ (without LN₂ precooloing) T < 4.4 K COP_r ~ 2.5 x10⁻³ (with LN₂ precooling) Running cost of the electric power significantly higher
- Noisy room at 100 m distance of the main cavern
- High flow of refrigeration water to be provided in the noisy room
- Electric power to run the cryo facility to be provided underground: *higher fire harzard*?