babyMOSS Test Set-up and Scans at Bari

Rajendra Nath Patra and Angelo Colelli for the babyMOSS Testing Team @Bari

04 April 2025

Set-up configuration

- DAQ board ID: DAQ-0009012905D1273D, Raiser board ID: Raiser-2041, Chip ID: babyMOSS-2_4_W20E1
- Zero-ohm shunt resistor in SUB at VBB = 0 V
- No Temperature control

Results to be Presented

- Fe⁵⁵X-ray spectra analysis using Time-over-Threshold (ToT) method.
 - 1. Changing Vbb = 0 V, -1.2 V
 - 2. Cluster analysis
 - 3. Targeted pixel's ToT

MOSS ToT measurement: Source Scan

Source-scan:

ToT study, M. Menzel

Setup for ToT measurement using ⁵⁵Fe X-ray

 ⁵⁵Fe X-ray energy spectrum measurement using Time-over-Threshold (ToT) method.

- I_{RESET}: variable
- V_{CASB}: 10
- All other DAC
 parameters: DEFAULT
- V_{SUB} : 0 V , -1.2 V

- With decreasing I_{RESET} , pulse length increases, i.e. spectrum resolution increases
- Is it possible to resolve Si_{esc}-peak or K_{\beta}-peak low I_{RESET}?
- 1. Variable V_{SUB} to 0 V and -1.2 V
- 2. ToT of Clusters analysis
- 3. Single pixel ToT measurement to avoid the gain calibration of the matrix

Explored methods

ToT measurement with I_{RESET} changing

- This time we explored with VSUB = -1.2 V, and ToT measurement is possible to down to IRESET = 1
- With decreasing IRESET, ToT value of 5.9 keV K_{α} is increasing

VSUB = - 1.2 V

ToT measurement with I_{RESET} changing

- With decreasing IRESET, ToT value of 5.9 keV K_{α} is increasing
- In this set up of VBB = 0 V, ToT scan performed down to IRESET = 3

VSUB = 0 V

Last presentation

ToT measurement with I_{RESET} changing

Peak	Mn - K_{α}	Mn - K_{eta}	Si_{esc}	Si_{fl}
Energy (keV)	5.90	6.51	4.16	1.74

IRESET, VSUB = 0V	ΤοΤ(Κ _α)	Si _{esc} /K _α *ToT(K _α) = 0.7*ToT(K _α)	K _β /K _α *ToT(K _α) =1.1*ToT(K _α)
10	30	21	33
8	38	27	42
6	50	35	55
5	58	41	64
4	70	49	77
3	82	58	90

- ToT resolution limited to $\approx 4 \ \mu s$ by Source Scan method
- No corrections applied
- ToT of pixel from all hits cannot resolve Si_{esc} -peak or K_{β} -peak

ToT measurement of different clusters

ToT measurement of different clusters with varying I_{RESET}

babyMOSS-2 4 W20E1 | Clusters populations | SourceTotAnalysis

pabyMOSS-2_4 W20E1 | TOT distribution clusters | SourceTotAnalysis

pabyMOSS-2 4 W20E1 | TOT distribution clusters | SourceTotAnalysis

babyMOSS-2 4 W20E1 | Clusters populations | SourceTotAnalysis

pabyMOSS-2_4_W20E1 | TOT distribution clusters | SourceTotAnalysis

babyMOSS-2 4 W20E1 | Clusters populations | SourceTotAnalysis

- ToT increases with decreasing I_{RESET} as signal fall time enlarged.
- With decreasing I_{RESET} two-cluster fraction gets down, which is due to signal formation issue at low value of I_{RESET}.
- Below I_{RESET} = 3 is impossible to measure ToT.

ToT measurement of different clusters with varying I_{RESET}

pabyMOSS-2_4_W20E1 | TOT distribution clusters | SourceTotAnalysis pabyMOSS-2_4_W20E1 | TOT distribution clusters | SourceTotAnalysispabyMOSS-2_4_W20E1 | TOT distribution clusters | SourceTotAnalysi

ToT measurement of targeted pixels with IRESET = 8, VSUB = 0 V

- One cluster distribution is following previously calculated one.
- Two cluster ToT also has a peak, however it looks shifted 1 bin to left.

ToT measurement varying the VCASB

ToT is not sensitive to VCASB

babyMOSS Test Set-up and Scans at Bari

ToT measurement varying the VCASB

13

Summary and Outlooks

- Performed tests of the babyMOSS with $V_{SUB} = 0 V$, -1.2 V
- Characterization with ⁵⁵Fe Activities:
 - ToT measurement with varying I_{RESET} for different clustes are studied
 - The ToT response of the targed pixel's for different cluster sizes are similar to the integrated ToT of the matrix.
 - ToT measurement is not sensitive to VCASB.

Plan:

Perform the ToT measurement using Source Stuck Readout method at $V_{SUB} = 0 V_{, -1.2 V}$

Back-up

Summary of the different scans performed

	Scans	babyMOSS- 2_4_W20E1
Functional tests	Power on	ОК
	Register	ОК
	Shift register	ОК
	DAC	ОК
Readout and pixel matrix tests	Digital	ОК
	Analogue	ОК
	FHR	ОК
	Threshold	ОК
Energy spectrum	ТоТ	Ongoing

• Region 1 of the bottom half unit is found to be noisy, as also reported by CERN tests.

FHR Scan: Different combinations of VCASB

- FHR at tb region 3 measured at VCASB = 25 with varying VCASB for other regions.
- A decreasing trend in FHR due to the influence of neighbouring regions' VCASB was observed.
- The uncertainties of FHR are one order of magnitude lower and are not presented here.

FHR Scan: Different combinations of VCASB on 24.01.2025, 30.01.2025

• The influence of neighbouring region is more significant at bottom region 3 which has larger FHR.

Threshold scan with VCASB

- To avoid cross-talk, one region is scanned while others remain inactive during a single scan, if possible.
- VCASB = 15 is a default one.
- TB region 3 has higher threshold
- BB region 3 has lower threshold

babyMOSS Test Set-up and Scans at Bari

Data of 14.02.25

Threshold scan with VCASB

Scans at lower VCASB

thr scan vs VCASB tb

baby MOSS Test Set-up and Scans at Bari

FakeHitRate scan with VCASB

To avoid cross-talk, one region is scanned while others remain inactive during a single scan, if possible.

The influence of neighbouring

all regions.

fhr scan vs VCASB tb Region 0 Region 1 Region 2 Region 3 tb: [27, 15, 15, 15] tb: [15, 27, 15, 15] tb: [23, 15, 15, 15] ٠ tb: [15, 23, 15, 15] tb: [15, 15, 31, 15] tb: [15, 15, 35, 15] tb: [15, 15, 15, 21] tb: [15, 15, 15, 25] tb: [24, 15, 15, 15] tb: [28, 15, 15, 15] tb: [15, 24, 15, 15] tb: [15, 28, 15, 15] tb: [15, 15, 32, 15] tb: [15, 15, 36, 15] tb: [15, 15, 15, 22] tb: [15, 15, 15, 26] tb: [15, 25, 15, 15] tb: [25, 15, 15, 15] tb: [29, 15, 15, 15] tb: [15, 29, 15, 15] tb: [15, 15, 33, 15] tb: [15, 15, 37, 15] tb: [15, 15, 15, 23] tb: [15, 15, 15, 27] T tb: [25, 25, 33, 23] tb: [25, 25, 33, 23] tb: [15, 26, 15, 15] tb: [25, 25, 33, 23] tb: [15, 15, 34, 15] tb: [25, 25, 33, 23] tb: [26, 15, 15, 15] tb: [15, 15, 15, 24] regions (or, cross-talk) is found in Hit Rate TS3 FHR requirement < 1E-6 S3 FHR requirement < 1E-Fake . 10-23 29 25 26 23 24 24 25 26 27 28 23 24 27 29 33 34 37 21 22 25 27 28 31 32 35 36 26 VCASB VCASB VCASB VCASB fhr scan vs VCASB bb Region 0 Region 2 Region 3 bb: [19, 15, 15, 15] bb: [23, 15, 15, 15] bb: [15, 15, 17, 15] . bb: [15, 15, 21, 15] bb: [15, 15, 15, 16] bb: [15, 15, 15, 20] bb: [20, 15, 15, 15] bb: [24, 15, 15, 15] bb: [15, 15, 18, 15] bb: [15, 15, 22, 15] bb: [15, 15, 15, 17] bb: [15, 15, 15, 21] bb: [21, 15, 15, 15] bb: [25, 15, 15, 15] bb: [15, 15, 19, 15] bb: [15, 15, 23, 15] bb: [15, 15, 15, 18] • bb: [15, 15, 15, 22] bb: [22, 15, 15, 15] bb: [22, 22, 19, 18] bb: [15, 15, 20, 15] bb: [22, 22, 19, 18] bb: [15, 15, 15, 19] bb: [22, 22, 19, 18] . Fake Hit Rate ITS3 FHR requirement < 1E-6 10-19 20 21 22 23 24 25 0.0 0.2 0.4 0.6 0.8 1.0 17 18 19 20 21 22 23 16 17 18 19 20 21 VCASB VCASB 21

baby MOSS Test Set-up and Scans at Bari

Data of 14.02.25

FakeHitRate scan with VCASB

Data of 13.02.25

baby MOSS Test Set-up and Scans at Bari

Threshold and FHR scans with VCASB

Thresholds	Region 0	Region 1	Region 2	Region 3	
ТОР	104 e	108 e	130 e	106 e	
BOTTOM	104 e	104 e	104 e	85 e	
MOSS User Manual					

THR scan

In THR stability scan at VCASB = 15, we observed before

- - ✤ This scan show that TH1 \lesssim TH0 = TH3 << TH2 at VCASB \gtrsim 20
- ✤ In BOTTOM THR expected: TH0 = TH1 = TH2 >> TH3
 - observed: TH0 \gtrsim TH2 >> TH3 (masked region 1)
 - The results are consistent

FHR scan

✤ In TOP - FHR2 << FHR0, FHR1, FHR3
✤ In BOTTOM - FHR3 >> FHR2 >> FHR0

Threshold and FHR scans with VCASB

• We can find the operating VCASB for each region provided that the FHR of ITS3 limit of <1E-6

TOT measurement: Source Stuck Readout Scan

MOSS pixel read-out

How can we make the RO get stuck intentionally?

- Assert long STROBE ~ 400 μs
- When OUTD activates, hit gets stored in latch
- TESTOUT configured such that it asserts if any pixel fired
- RO-command on TESTOUT, will read hit, reset latch
- As STROBE & OUTD still active, latch will store same hit again
- Priority-encoder will read out same pixel again
- Pixel will be read-out n times until OUTD deactivates*

https://indico.cern.ch/event/1479059/contributions/6229956/attachments/2983389/5254072/24_12_10_ToT_StuckRO.pdf

Source Stuck Readout Scan - babyMOSS

babyMOSS ⁵⁵Fe Spectum - Tot distribution - SourceStuckTotAnalysis

- Method based on readout of the same pixel when the strobe is activated
- The resolution is higher than the Tot one
- Calibration and correction tecnique under investigation

babyMOSS Prototype summary

• There are different front-end variants within a HU:

	Region 0	Region 1	Region 2	Region 3	
ТОР	Standard	Larger input transistor (M1)	Larger discriminator input transistor (M11)	Larger common-source transistor (M2)	D0
BOTTOM	Standard	Standard	Standard	Slightly different layout	

 For nominal settings with pwell/psub at 0V and Cin = 5 fF, simulated thresholds are:

Thresholds	Region 0	Region 1	Region 2	Region 3
ТОР	104 e	108 e	130 e	106 e
BOTTOM	104 e	104 e	104 e	85 e

- In "standard layout" a parasitic capacitance added to improves the stability of the circuit. This capacitance, however, also reduces the frontend gain (red curve).
- In "slightly different layout" parasitic capacitance was slightly reduced, so front-end gain increases (yellow curve). babyMOSS Test Set-up and Scans at Bari

DPTS paper reference plots

baby MOSS Test Set-up and Scans at Bari

DPTS paper

28