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• High-luminosity LHC era (HL-LHC) starting in ~2030
- x3-4 instantaneous luminosity
- up to x5 pileup (PU) interactions
- x10 integrated luminosity

• Crucial to isolate interaction of interest and mitigate effects of PU on 
object reconstruction 

• Current global event reconstruction relies on track-vertex association in 
space
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Challenge: keep current 
performance during HL-

LHC phase

HL-LHC 
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• Minimum  Ionizing  Particle  Timing  Detector 
(MTD) proposed for the CMS experiment Phase2 
upgrade

• MTD will  provide  timing  information  for  MIPs 
with a 30-40 ps resolution ➜ smaller than the pp 
collision spread in time of 180-200 ps 

• The  vertical  yellow  lines  indicate  3D-
reconstructed (i.e.  no use of  timing information) 
vertices
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PU ~ 200

PU ~ 140

PU ~ 30

Track-Vertex Association

Vertices overlap in position, 
but separate in time

PRECISION TIMING AT CMS IN HL-LHC

4D vertex reconstruction — Use 
timing information to separate 
vertices that overlap in space 
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• Thin layer between tracker and calorimeters

• Almost hermetic (|η|<3)

• Different regions adopt different technologies, suited to the level of radiation dose:

- Barrel Timing Layer (BTL)—arrays of LYSO crystal bars readout by SiPMs

- Endcap Timing Layer (ETL)—Low Gain Avalanche Detector (LGAD) module
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MIP TIMING DETECTOR 

• LYSO Bars + SiPM readout 

• |η| < 1.45 & pT > 0.7 GeV 

• Active area ~ 38 m2

• Si with internal gain 
(LGADs)


• 1.6< |η| < 3.0

• Active area ~ 14 m2

BTL

ETL
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• New 4D vertexing algorithm shows significant improvement in separating close by 
vertices  CMS-DP-2024-085 

• However,  incorporating  Machine  Learning  architectures  for  track  clustering 
particularly under high pileup conditions, could further improve performance.

• Graph Neural Network (GNNs) are suited for track clustering and identifying 
track time/mass hypothesis 

• Two promising GNN architecture are studied :

- GNN combined with Edge Convolutional for message passing with a static pre-
computed graph 

- GravNet architecture with dynamic graph where k-NN search is performed at 
each convolutional layer 

• For sanity checks of model architecture and directly comparing 3D vertexing with 
Deterministic Annealing (DA), we are just using the spatial information.

4D VERTEXING AND GNN 

https://cds.cern.ch/record/2914583
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• The  GNN+EdgeConv  architecture  is  adapted  from  HGCAL  trackster  linking 
algorithm (HGCAL trackster), for nodes representing tracks and connection between 
them as edges. 

• The model’s output is given by an edge score between 0 and 1, with 1 indicating a 
good or true edge. 

Edge Conv Block 
From J. Jaroslavceva’s thesis 

Model Architecture

GNN + EDGE CONVOLUTIONAL  

https://cds.cern.ch/record/2865866/files/CERN-THESIS-2023-110.pdf?version=1
https://cds.cern.ch/record/2865866?ln=en
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•  Build graph with tracks as nodes

- Node features : z, dz

- Edge features : track-track z distance, and track -track dz significance

- Possible edges between tracks with z-separation < 3 mm

•  Defining True edges labels: that come from same vertex in an signal/PU event 
in BX == 0, same event ID and being the leading vertex of the event
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True and False Edges 
Ratio 

BUILDING GRAPH

ROC Curve Edge Curve 
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• The edge score for the tracks is calculated from the 
model to tracks and we decide a threshold to accept 
the good tracks

• Once the threshold is given, the algorithm cluster 
the tracks by finding the connected neighbors to a 
node, and which are above this threshold.

• We worked with two clustering algorithm to cluster 
the good connected tracks to form vertex candidate

- Depth First Search (DFS)

- Density-based spatial clustering of 
applications with noise (DBSCAN). This 
model need two inputs provide two parameters 
ε (eps) and the minimum number of points 
required to form a dense region (minPts)
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CLUSTERING 



Jyoti Babbar (CMS)Jyoti Babbar (CMS)

• We  compare  the  results  with  Deterministic 
Annealing currently used by CMS for vertex 
reconstruction.

• DBSCAN  and  DFS  algorithms  are  
reconstructing less vertices than Deterministic 
Annealing 
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Both  algorithms  are  not  an  appropriate 
choice  for  vertex  reconstruction—> 
significantly less number of total vertices. 
It was chaining the tracks and clustering 
far-apart tracks together. 
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✦ Embeddings: 
- Project tracks into a learned space where clustering can be performed.
- Tracks from the same vertex are encouraged to be close in embedding space.

✦ β :
- This indicates the "attractiveness" or importance of each track as a potential cluster center.
- Tracks with higher values are more likely to be seeds for clusters (vertices).

�11

Output of Model 

✦ GravNet model is the potential based model, i.e on 
the  distance  emphasizing  the  influence  of  close 
neighbors. 

✦ The exponential decay ensures that nearby hits in the 
embedding space exert a larger influence.

Vij = exp(−dij)

GRAVNET 

Eur. Phys. J. C 79, no.7, 608 (2019)
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• Object Condensation method is used as the loss function following [2]. This method 
is independent of assumption on object-size, and can be generalized for graphs or 
point clouds. 

• The  total  loss  term  in  this  method  is  composed  of  three  main  components  :  
Attractive Potential Loss Term , Repulsive Potential Loss term and β loss term 
(followed by [1] and [2]) 
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• The clustering of tracks is done based on β confidence output of the model [1] 
- Tracks are sorted in descending order of β value
- Clustering starts with the highest β track, and within td distance parameter 

tracks are clustered and become a vertex candidate 
- Then, the process is repeated with the β ranking order. 

• Highest β track is the condensation point (or seed) of a cluster  
1.S. R.Qasim, J. Kieseler, Y.Iiyama and M. Pierini, Learning representations of irregular particle-detector geometry with distance-

weighted graph networks, Eur. Phys. J. C 79, no.7, 608 (2019), doi:10.1140/epjc/s10052-019-7113-9.

2. J. Kieseler, Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph and image data, Eur. 
Phys. J. C 80, no.9, 886 (2020) doi:10.1140/epjc/s10052-020-08

LOSS FUNCTION & INFERENCE 
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RECO Vertex Number: Number of vertices
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#PU vertices vs #fake matched vertices
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#PU vertices vs #real matched vertices

• Better separation of real vertices with smaller z 
difference. 

• The  number  of  reconstructed  vertices  as  a 
function of  the number of  PU vertices  for  real 
and fake vertices 
- We get less real and more fakes than DA.
- We are over-splitting the vertices. 

•We are currently refining the Loss Function to 
improve the model performance 
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• The inference of the model is consuming too much time and memory,  

• We have started running the Inference on lxplus GPUs. 

• We are testing our model with the SONIC framework (Services for 
Optimized Network Inference on Coprocessors) to do the inference of 
the model on Nvidia Triton Inference Server. 
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COMPUTATIONAL STUDIES 

In SONIC —the ML model 
computations  are  offloaded 
to the NVIDIA co-processors 
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SUMMARY

• The timing information of MTD is important to mitigate the effects of PU in 
HL-LHC

• EdgeConv with DFS and DBSCAN is currently underperforming relative to 
expectations.

• GravNet shows encouraging potential compared to EdgeConv, though 
model development and optimization are ongoing.

• Work is in progress to incorporate timing and additional input features 
into model training, along with loss function refinement for improved 
performance.

Thanks !!!!!


