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KM3NeT: layout [J.Phys.G:Nucl.Part.Phys.43 084001 (2016)]

KM3NeT/ORCA
ex ANTARES site

KM3NeT/ARCA

ORCA (spacing 23×9 m): high statistics of atmospheric ν

ARCA (spacing 90×36 m): rare fluxes of extraterrestrial ν
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KM3NeT: building roadmap
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KM3NeT: layout

Current status:
ARCA: 33/230 lines
ORCA: 28/115 lines
Once completed:
2 × 500 Mton ARCA,
7 Mton ORCA

Optical module: 31 × 3” PMTs
Digital photon counting
Directional information
Wide angle of view

All data transmitted to shore via optical fiber → prompt alerts to multimessenger network
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Performance: pointing

KM3NeT reconstructs two classes of events:

Tracks: predominantly νµCC ; angular resolution down to 0.1◦ at 1 PeV - fly-through
Showers: predominantly νe CC or any NC; angular resolution 1◦ at 1 PeV - contained
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Performance: particle identification

Example: 1 GeV muon leaves a track of a few metres in water. ORCA granularity: 23×9 m

[PDG, Phys.Rev.D 110, 030001 (2024) In ice In water

Simulation of light from a 10 TeV cascade in ice (left) and water (right).

Larger scattering length: direct photons → better pointing and particle identification.
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Neutrino astronomy in the making: experimental challenge

Preserve source information thanks to very weak interaction: large enough detector volume +
a good filter (the Earth). Astrophysical ν: atmospheric ν: atmospheric µ = 1:104 :1010.

[Progr. in Part. and Nucl.Phys. 67 (2012) ]

[Pic. credits: J Coelho]
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The neutrino-gamma connection: hadron acceleration

All sites where proton or nuclei are accelerated radiate γ and ν

1 pN → π0, π±, η0 + X like in SNR with molecular clouds
2 pγ → ∆+ → n + π+ or p + π0... + X like in jets of active galactic nuclei

In Galactic sources surrounded by clouds,
with steady emission: p − N of protons
on molecular gas

In extragalactic sources surrounded by
high photon density, exhibiting flares:
p − γ of protons on AGN jets
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Physics case 1: extraterrestrial neutrinos

High-energy cosmic ν are expected from collisions yielding particles such as π± and µ±,
through pp and pγ scattering, taking place in different environments, steady or with flares

[Fig. from Universe 2020, 6(2), 30]

Neutrino astronomy: backtracking sources
1 As a correlation with underlying catalogue

1 Jets of active galactic nuclei (AGNs)
2 Starburst galaxies, star-forming galaxies
3 Expanding front of supernova remnants
4 Gamma-ray bursts
5 IceCube HE events

2 As autocorrelation or clusters in space (-time)
Search for a diffuse excess and measurement of its
energy spectrum. Accelerator properties.
Search for prompt multimessenger coincidences
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Observation of an ultra-high-energy cosmic ν with KM3NeT
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Observation of an ultra-high-energy cosmic ν with KM3NeT

Observed with 21-line configuration of KM3NeT/ARCA [Nature 638, 376–382 (2025)]

Horizontally crossing the detector traversing continental shelf: not an atmospheric muon

35% of the detector (3672 photomultipliers) triggered

1 in 110 million data events

Simulation Data
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https://www.nature.com/articles/s41586-024-08543-1


KM3-230213A: horizontal muon from νµ

Actual water equivalent distance even larger due to continental shelf → not an atmospheric µ.
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Observation of an ultra-high-energy cosmic ν with KM3NeT
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Reconstruction of the muon track

Arrival time residuals of photons at photomultipliers well understood.
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Rich detail of the muon track

Light profile consistent with at least 3 large energy depositions along the muon track:
characteristic of stochastic losses of very high energy muons.
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Ultra-high-energy cosmic ν with KM3NeT: energy

Muon energy: 120+110
−60 PeV, based on Monte Carlo simulation. The measured muon energy

serves as a lower limit on the incoming neutrino energy.

Neutrino energy: 220+570
−100 PeV, 110–790 PeV (68%), 72 PeV–2.6 EeV (90%), under the

assumption of a E−2 spectrum.
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Ultra-high-energy cosmic ν with KM3NeT: arrival direction

Celestial coordinates: RA = 94.3◦, dec = −7.8◦, with 1.5◦ uncertainty. Region-of-interest
(cut/count) based searches will improve significance with more restrictive uncertainty radius.
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Ultra-high-energy cosmic ν with KM3NeT: search for counterparts

Candidate blazars selected through multi-wavelength properties with dedicated proposals. (1)
radio flare on neutrino arrival time (pre-trial p = 0.26%); (2) rising trend in the X-ray flux in a
one-year window around the event; (3) γ-ray flare. Correlation non conclusive.

KM3-230213A

Radio blazars (RFC 2024c above 150 mJy, 3400)

Blazars with lightcurves (OVRO CGRaBS, 1157)
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Ultra-high-energy cosmic ν with KM3NeT: search for counterparts

Lack of a nearby potential Galactic particle accelerator in the direction of the event. Low
fluxes of the Galactic diffuse emission at event’s energies. Unlikely of Galactic origin.
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[https://arxiv.org/pdf/2502.08387]
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Ultra-high-energy cosmic ν with KM3NeT: search for counterparts

Null observations above tens of PeV from the IceCube and Pierre Auger observatories ⇒ joint
fit performed, under the assumption of an isotropic E−2 flux.
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Ultra-high-energy cosmic ν with KM3NeT: search for counterparts

Light tension with the standard cosmogenic neutrino predictions. Observation can be
reconciled with limits by Pierre Auger and Telescope Array by extending up to a redshift of
z ≃ 6 and assuming a subdominant fraction of protons in UHE cosmic-ray flux.
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Multi-messenger networking

Flares, transients and other sources with time variability (GRBs, gravitational waves, SN)

Example: flares caused by hadronic emission on top of quiescent state → Prompt alerting
system associated with rapid online analysis and pointing directions for telescopes

1 SNEWS pipeline active for real-time
analysis

2 KM3NeT replaces ANTARES in follow-up
of alerts (ATel, GCN via AMON)

KM3NeT
PRELIMINARY
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Neutrino coincidence with gravitational waves

Multi-messenger alert network for flares, transients and other sources with time variability
(GRBs, gravitational waves, supernovae)

Offline analysis of event rate alerts in O3 run of VIRGO/LIGO - 190 of 900 alerts were inside
the field of view of KM3NeT. Real-time follow-up of O4 alerts.
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Core-collapse supernova ν

Produced in stellar core collapse at the end of stellar evolution like SN1987A. Real-time search
for simoultaneous rate raise in DOMs [PoS(ICRC2023)1160]

Figure: Left: image of a DOM with 4 out of the 31 PMTs highlighted. Right: Multiplicity distribution
for a 6 hour period of ORCA6 (full black) compared to simulations.
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Core-collapse supernova ν

Produced in stellar core collapse at the end of stellar evolution like SN1987A. Real-time search
for simoultaneous rate raise in DOMs [PoS(ICRC2023)1160]
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Sensitivity to strongest Galactic sources

In hypothesis of hadronic emission, computing ν flux from γ-ray flux, several extended
Galactic sources will be observable in a few years of operation.

RXJ1713.7-3946
A&A 464 235

Example of γ-ray
emission as seen
by H.E.S.S. Expected ν fluxes Sensitivity at 90% CL as a

(assumed 100% hadronic scenario) function of the observation time
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Galactic diffuse emission

Characterize and identify sources with KM3NeT in model-independent way (ON/OFF
method) or template fit (from γ rays, KRA, CRINGE). Small excess seen by ANTARES
with 1.5 – 1.8 σ. IceCube: only template method (Pole does not rotate)
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Galactic diffuse emission: message

Neutrino astronomy is particle physics at all effects! Moreover

Powerful accelerators operate in other galaxies that do not exist in our own.
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Physics case 2: fundamental neutrino properties

Oscillations, mass ordering and related observables

Flavour-related observables require particle identification in detector (e, µ, τ lepton?). Ideal
region for search is GeV and just above, at the first disappearance peak.

[Pic. credits: J Coelho]
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Measurement of atmospheric oscillation parameters with KM3NeT

Oscillations are seen in KM3NeT/ORCA through νµ disappearance with significance > 6σ

Data set: 715 kton-years (6+10+11 detector lines). 1.6 Mton-y of data awaiting.

Best fit: sin2 θ23 = 0.50+0.07
−0.07 ∆m2

31 = −2.09+0.17
−0.21 · 10−3eV2.

Data display a slight preference for inverted ordering.
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Neutrino mass ordering

Matter resonance at 5 GeV affects: ν if normal ordering (NO), ν̄ if inverted ordering (IO).

Figure: Right: oscillation probabilities νµ → νµ and νe → νµ for different energies and baselines. The
solid (dashed) lines are for NO (IO), ν (left) and ν̄ (right).
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Neutrino mass ordering

Matter resonance at 5 GeV affects: ν if normal ordering (NO), ν̄ if inverted ordering (IO).
Sensitivity due to ν-ν̄ asymmetry in flux and cross section. Both µ- and e-channels contribute.

Expected sensitivity: number of
expected events with normal/inverted
hierarchy (NIH − NNH)/NNH

and relative χ2. Left: muons; right:
electrons. Electron channel is more
robust against detector resolution.
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Physics case 3: indirect searches for new physics signatures

Neutrino telescopes are versatile instruments!

1 Indirect dark matter searches (rather unconstrained par. space, both ORCA and ARCA)

2 Effects that alter oscillations of atmospheric neutrinos, which are measured with high
statistics (ORCA)

3 At TeV-PeV energies: limits from cosmic neutrinos: effects that scale with energy or
accumulate along large distances (ARCA)
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Dark matter as a thermal relic

Particularly symptomatic candidates (WIMPs: correct relic density in a freeze-out scenario)
give rise to sizeable fluxes of high-energy ν. Overdensity regions of dark matter in Galactic
haloes. Characterize energy distribution and source morphology.
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The extra trouble with indirect searches: external input

Indirect searches are unavoidably affected by large uncertainties. This also means that
these searches alone can hardly make a univocal claim for detection.

(I) Energy feature

x = Ekin/mχ

Affected both by energy rec. of the detector (20% – 5%)
and by theoretical uncertainties (10% – 30%) mostly on
hadronization model [JCAP03(2024)035]

(II) Ambient

[M. Hütten / CLUMPY]

Dominated by astrophysical
input for modelling haloes
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Indirect dark matter searches with ANTARES and KM3NeT

Search for a signal of neutrinos from the annihilation of WIMP dark matter in the Galactic
Centre and the Sun, using maximum likelihood algorithm.

[Credit: NASA/Fermi-LAT]
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Indirect dark matter searches with ANTARES and KM3NeT

Galactic Centre visible for about 70% of the time in regular data taking mode, using the Earth
as a filter. Data from ANTARES (2007 to 2022) and partial configuration of KM3NeT/ARCA
is found consistent with background for all combinations of WIMP parameters [Phys. Lett.
B 805 (2020)] [JCAP03(2025)058]
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3. Test of novel dark matter scenarios

Above 10-100 TeV, in line with recent interest for BSM physics in heavy sectors at colliders.

Modified cosmological evolution: universe at freeze-out is smaller ⇒ the same amount of DM
is later more diluted ⇒ σv(DM DM → VV) smaller ⇒ DM can be heavier

(I) Unitarity bound on the dark matter mass naturally evaded with a modified cosmology.
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Heavy dark matter in secluded scenarios

(II) DM DM → 4SM leaving the Galactic Centre as neutrinos. Spectra of relevance for
experiments are computed from boosted PPPC4DMID [JCAP02(2019)014].

The relevant energy scale is not the heavy DM mass (that would demand a resummation
of EW radiation for mDM > 10 TeV), but rather the sub-TeV mediator mass, where the
first order treatment of EW corrections included in PPPC4DMID is under control.
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Test of novel dark matter scenarios

Search explores for the first time parameter space regions at high energies / large masses up to
6 PeV [JCAP06(2022)028].
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Heavy neutral leptons: new physics with atmospheric neutrinos

Heavy neutral lepton (HNL) such as 4th sterile ν with mass around the GeV could leave a
signal in KM3NeT/ORCA [JHEP05 030(2009)], [PRL 119(2017)], that could become
competitive with its future larger-volume configurations, and can already search in data.

HNL mass: in keV range: dark matter candidate, in O(1 − 100) GeV can generate the
matter-antimatter asymmetry (baryogenesis from ν oscillations) [arXiv:1606.06719]
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Heavy neutral leptons: context
Problem of hierarchy in fundamental scales → ν masses are tiny. How built?

1 Tiny Yukawa couplings. Tuned by hand
2 See-saw mechanism. Masses of active ν are kept small by large M.

Lmass
see−saw = −1

2(Φ̄L, Φ̄R)
(

0 mD
mD M

)(
ΦL
ΦR

)

Diagonalizing mass matrix: mlight ≃ m2
D

M , mheavy ≃ M

Type-1 see-saw. HNL search with KM3NeT.
Heavy N can hardly be tested Light N weakly interacting.
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Search for heavy neutral lepton signatures

Signature: double cascade events at low energy. Active ν is atmospheric, after oscillations.

1 HNL production via neutral current + mixing in final state. |Uτ4|2 is the least
constrained. Separation between vertices (decay length) depends on MN and on |Uτ4|2.

2 HNL production via a transition magnetic moment: NC + W loop + mixing in final state

44 / 54



Generation and identification in KM3NeT

Dedicated simulation of HNLs with the lepton injector of SIREN [arXiv:2406.01745].
Machine learning regression (dynedge) to discriminate and reconstruct distance and energy.

Background?
1 Random coincidences of two uncorrelated muons:

about 3·10−9: negligible
2 Stochastic electromagnetic showers along the track:

only relevant for µ, not for e
3 ντ : completely negligible. At GeV energies the two

cascades are µm apart: completely overlayed.

The signature with two cascades separated by a long distance is characteristic fingerprint
of something new outside the Standard Model
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New physics in flavour oscillations: quantum decoherence

Wave packet separation Interaction with environment

Here in the case: non-closed quantum system (ν) in interaction with enviroment.

Neutrino + environment represented as a quantum system (mixture of states, ρ) with
dissipative term D (decoherence) that damps the oscillation probabilities.

dρ(t)
dt = −i [H, ρ(t)] + D[ρ(t)]
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Neutrino quantum decoherence

Neutrino mass eigenstates lose their coherent superposition due to interactions with the
environment → oscillation amplitude is suppressed [https://arxiv.org/abs/2410.01388]
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Non-standard interactions of neutrinos (NSI)

LHC has detected no new particles ⇒ interest turns towards possible new operators that
can be constructed: modifications of the Standard Model that manifest themselves indirectly.

SM effective theory (SMEFT) = SM + dimension 6 operators + ...

All dimension-4 operators that observe Lorenz invariance and gauge symmetry are already
contained in the SM. Next possible trial is dimension 6 ⇒ this brings in new terms in the
Hamiltonian ⇒ new vertex ⇒ modified interaction.
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Non-standard interactions of neutrinos (NSI)

Neutral current forward scattering of neutrinos inside the Earth is modified →
Flavour-dependent matter effects alter neutrino oscillations inside the Earth.
[https://arxiv.org/abs/2411.19078]

49 / 54

https://arxiv.org/abs/2411.19078


Sterile neutrinos

Motivation: (3+1) models with ∆m2
41 ∼1 eV2 might explain short baseline anomalies.

KM3NeT is sensitive to mixing angles Θ24andΘ34.
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Conclusions

KM3NeT has recorded 715 kton-year (ORCA) and 332 days (ARCA) of high-quality data

Rare UHE event observed with E = 220 PeV, likely extragalactic origin, however no
conclusive evidence of candidate source associated

Multi-messenger program ongoing: real-time monitoring of astrophysical transient,
IceCube neutrinos, gravitational waves

Flavour oscillations measured through νµ disappearance with more than 6σ

Indirect tests of physics beyond the Standard Model expectations through effects on
oscillation probabilities, indirect dark matter searches

The most exciting phrase to hear in science [...] is not ‘Eureka!’
but ‘That’s funny...’ [Isaac Asimov]
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ANTARES decommissioning
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