Searching for Hqq->bbqq

P. Azzurri, J. Bernardini, D. Caiulo, R. Dell'Orso, F. Fiori, F. Palla, P. Spagnolo *INFN Pisa*

S. Alderweireldt, S. Bansal, X. Janssen, S. Luyckx, N. van Remortel Universiteit Antwerpen

> Konstantinos Kousouris CERN

CMS meeting Pisa, 16/12/2011

Outline

- Signal and Backgrounds
- Trigger strategy
- Discriminating variables
- MVA results
- A look at the 2011 data

The qqH->qqbb signal

VBF is the second most important Higgs production mechanism at the LHC

Signal events properties

Signal four quarks: bbqq

J. Bernardini

CMSmeeting 10/02/12

Signal four quarks: bbqq

p_-ordered parton spectra : $(1=hardest \dots 4=softest)$ $\langle p_{T1} \rangle = 98 \text{ GeV}$ $\langle p_{T2} \rangle = 77 \text{ GeV}$ $\langle p_{T3} \rangle = 48 \text{ GeV}$ $\langle p_{T4} \rangle = 28 \text{ GeV}$ the fourth (softest) parton is soft !

η-ordered parton distributions : (1=most central ... 4=most forward)

 $\langle |\eta_1| \rangle = 0.5 \qquad \langle |\eta_2| \rangle = 1.2 \qquad \langle |\eta_3| \rangle = 2.0 \qquad \langle |\eta_4| \rangle = 3.1$

In pairs, the two most central partons can be:

- the two b-quarks (45%)
- one b-quark and one associated-quark (54%)
- the two associated-quarks (1%)

total four-quark system :Total $p_T \sim 7 \text{ GeV}$. Total $p_L \sim 600 \text{ GeV}$.Total invariant mass $\sim 700 \text{ GeV}$.Total $H_T \sim 250 \text{ GeV}$

Collateral Signal

115 GeV

H+jets (up to 3)

911

3.50

4.03

1.77

Gluon Fusion Higgs (bb) + jets

Campbell, Ellis, Zanderighi Next-to-leading order Higgs + 2 jet production via gluon fusion http://arxiv.org/pdf/hep-ph/0608194v2

Higgs mass

 $\sigma_{\rm LO}$ [pb]

 $\sigma_{\rm NLO}$ [pb]

 $\sigma_{\rm WBF}$ [pb]

Backgrounds

Summer11				
		#events	sigma(pb) lumi(fb-1
/QCD_TuneZ2_HT-100To250_7TeV-madgrap	oh14437469	4194000.0)	0.00344
<pre>/QCD_TuneZ2_HT-250To500_7TeV-madgrap</pre>	oh20674219	198500.0	0.1042	
/QCD_TuneZ2_HT-500To1000_7TeV-madgra	aph	14437469	5856.	0 2.465
/QCD_TuneZ2_HT-1000_7TeV-madgraph	•	6294851	122.	6 51.597
/WW_TuneZ2_7TeV_pythia6_tauola		4225916	27.8	3 151.8
WZ_TuneZ2_7TeV_pythia6_tauola		4265243	10.4	7 407.4
/ZZ_TuneZ2_7TeV_pythia6_tauola	4187885	4.287	976.9	
/TTJets_TuneZ2_7TeV-madgraph-tauola		3701947	94.76	39.066
/ZJetsToQQ_HT-100_7TeV-madgraph (dedicated production)		7647683	3488	3 2.192

requiring 4 Jets $p_T > 10 \text{GeV} \sigma(\text{QCD}) \sim 10 \mu \text{b} \sim 10^7 \sigma(\text{VBF H})$

Trigger strategy : L1

L1TripleJet_X_Y_Z_VBF = (3 central >= X, Y, Z) OR (2 central >= Y, Z and 1 Fwd >= X) OR (2 central >= X, Z and 1 Fwd >= Y)*

- L1TripleJet_64_44_24_VBF as main
- L1TripleJet_64_48_28_VBF as backup

*No option for Z to be forward : Stay save from increased PU in the forward region for a low Z cut value

	5 / 7 *10 ³³ (KHz)	Efficinecy	Pure (KHz)
L1_TripleJet_64_44_24_VBF	10.94 / 0	62 %	1.1
L1_TripleJet_64_48_28_VBF	7.44 / 0	56 %	
L1_TripleJet_64_48_32_VBF	5.17 / 8.34	50 %	1.8

https://twiki.cern.ch/twiki/pub/CMS/L1Menu2012WorkingPage/Draft3_7e33_NewNaming.pdf

Trigger strategy : HLT

- 1 track pT > 80
- 2 tracks pT > 58
- 3 tracks pT > 45
- 4 tracks pT > 20
- Sort the 4 jets with the highest pT on η . Take the jet with the lowest and highest η and abel them as $\ll qq \gg$
 - Mqq > 200
 - |Δηqq | > 2.5
- 1 jet with BtagL25 > 2.5
- 1 jet with BtagL3 > 7.5
- Sort the 4 jets on Btag. Label the 2 lowest btagged jets « qq »
 - Mqq > 200
 - <mark>- | Δη</mark>qq | > 2.5

pT cuts (GeV) [80 58 45 20] [80 68 45 20] [80 72 48 24]

Rate (Hz)	3.34 +- 0.44	2.24 +- 0.36	1.69 +- 0.32	@ 5*10 ³³
Eff (%)	8.05 +- 0.3	7.26 +- 0.26	6.1 +- 0.24	

Trigger strategy : CPU Time

Trigger strategy : CPU Time

Trigger strategy : CPU Time

Offline analysis

After the trigger selections we expect (events in 10/fb)

QCD-100_250	54 pb	(540 000)
QCD-250_500	782 pb	(7 820 000)
QCD-500_1000	91 pb	(910 000)
QCD-1000	2.3pb	(23 000)
tt	2.8pb	(28 000)
Zqq	2.4 pb	(24 000)
WW	0.012pb	(120)
WZ	0.010pb	(100)
ZZ	0.006pb	(60)
signal	0.13 pb	(1 300)

the total background is 934pb (9M events) we still have S/B around 10⁻⁴.

Kinematic 2C fit

Rescale the 5 leading jets in the event to impose transverse balance with

Very small improvement in M(bb): +6% in μ/σ (reach +10% cutting on the fit χ^2 with small loss of signal events)

Jet axes in the (η, φ) plane

Measure the jet width to discriminate QCD gluon jets from signal light quarks

$$M_{11} = \sum w_i \Delta \eta_i^2 = a$$

$$M = \begin{array}{c} \mathcal{X} M_{11} & M_{12} \\ \mathcal{X} M_{22} = \sum w_i \Delta \phi_i^2 = b \end{array}$$

$$M = \begin{array}{c} \mathcal{X} M_{11} & M_{12} \\ \mathcal{X} M_{21} & M_{22} \\ \mathcal{M} M_{21} \end{array}$$

$$M_{12} = M_{21} = -\sum w_i \Delta \phi_i \Delta \eta_i = c$$

$$φ$$
 at Jet
 a_2 $θ$ $η$

Eigenvectors:
$$I_{1,2} = \frac{a+b\pm\sqrt{(a-b)^2+4c^2}}{2}$$

Major axis

$$a_{1} = (/_{1} / a_{1} w_{i})^{\frac{1}{2}}$$

Minor axis $a_2 = \left(\frac{1}{2} \operatorname{am} w_i\right)^{\frac{1}{2}}$

Minor/Major axis rotation angle in the (η, φ) plane:

$$\tan q = \frac{/-a}{c} = \frac{c}{/-b}$$

J. Bernardini

CMSmeeting 10/02/12

Jet axes in the (η, φ) plane

MC di-jets pT=80-120 GeV

optimal weight to assign to jet components is found to be $w_i = E_{Ti}^2$

Jet axes validation

Selected **di-jet** events with pT=50-80 GeV

MC (di-jets) / Data (2011A Data DiJetAve30)

good agreement also in η bins

Discriminating variables

- p_{T1} p_{T2} p_{T3} p_{T4} of the four leading ak5 PF jets (fully corrected)
- p_{T5} of the fifth ak5 PF jet
- minor/major axis of the 4 leading jets in the η - ϕ plane
- largest two btag values (JetBProbability on ak5PFBJets)
- max Δη between all pairs among the leading 4-jets
- Δη between two most b-tagged (bb) and least b-tagged (qq) 4-jets
- invariant mass of the least b-tagged (qq) 4-jets
- x² of event kinematical fit
- Total p_T of charged tracks (>300MeV/c) associated to the hardest PV and not to the 4 leading PF Jets.

Fed to a Multi Variate Analysis with the TMVA Root package

- trained only against QCD background
- tried both Neural Networks (MLP) and Boosted Decision Trees
- results shown are rescaled to expected ones with 10/fb

MVA outputs

BDT has a overall worse separation power wrt MLP (for configurations tried up to now)

MVA performance

• N BKG in 10 fb⁻¹ ~ 9.3M

N Signal in 10 fb⁻¹~ 1.3 K

- 9.232.714 from QCD
- 70.680 from ttbar, Zqq, ZZ, WW, WZ

- MLP cut at 0.6 yields a 1.5σ Significance
- BDT cut at 0.011 yields a 1.2σ Significance

Selected events

After the MVA cut (MLP>0.6) we expect (events in 10/fb)

QCD-100_250	0.21 pb	(2 100)
QCD-250_500	3.91 pb	(39 100)
QCD-500_1000	1.17 pb	(11 700)
QCD-1000	0.01pb	(100)
ttbar	0.031 pb	(310)
Zqq	0.057 pb	(570)
WW	0.00005pb	(0.5)
WZ	0.00010pb	(1)
ZZ	0.00008pb	(1)
signal	0.038 pb	(380)

signal (380), Zqq (570) and ttbar (310) floating on 50k QCD events now S/B is around 10⁻².

...but didn't use the bb mass yet

M(bb) after selection

Signal significance MLP>0.6: 1.51σ 1.85σ in the [100-140] interval

(Z->qq)+jets

Use the Z peak presence as a reference candle

28

ttbar contribution

a look at the 2011 data

run the analysis on the HLT QuadJet70 data sample (mostly unprescaled in 2011A) : luminosity 1.3 fb⁻¹ HLT signal efficiency is 0.8% (0.4% after MLP>0.6 cut)

Monte Carlo reweighted to data PU distribution. Data 21M events:

events	after HLT cuts	with MLP>0.6
QCD-100_250	872	0
QCD-250_500	26 493	794
QCD-500_1000	8 485	688
QCD-1000	454	12
ttbar	422	11
Zqq	152	19
WW	1	0.001
WZ	1	0.02
ZZ	0.4	0.03
Signal	21	11.5 (0.280
All MC	36 881 ± 820	1536 ± 92
Data	34 703	1676

Ό

Minvgg

After applying our HLT_QuadJet_Btag selection on top

Conclusions & Outlook

Trigger approved and HLT Path submitted yesterday

The VBF H->bb channel could potentially bring extra significance to the CMS discovery of a light Higgs boson in the 115-125 range

This channel is extremely arduous but the final sensitivity could be not so far from other complementary channels (VH->bb or tau channels)

Need to start a laborious work on the signal extraction with a multi component fit of the final M(bb) distribution, and on accessing and estimating systematic uncertainties.

Help is welcome

(actually there are other interested people)

Backup

Kinetical Fit to "close" the event in the trasverse plane

$$\chi^{2} = \sum_{i=1,n} (\alpha_{i} - m_{i})^{2} / \sigma_{i}^{2} + \lambda_{1} (\sum_{i=1,n} \alpha_{i} P_{xi} + P_{x}^{\text{recoil}}) + \lambda_{2} (\sum_{i=1,n} \alpha_{i} P_{yi} + P_{y}^{\text{recoil}})$$

- i = index running on the number of the jet
- n = total number of jets to fit
- α_{i} = correction factor applied to the Lorentz vector (P_{x}, P_{y}, P_{z}, E) m_{i} = response function of $P_{t}^{reco}/P_{t}^{parton}$ as a function of P_{t}^{parton} σ_{i} = rms of $P_{t}^{reco}/P_{t}^{parton}$ as a function of P_{t}^{parton} $P_{x(y)}^{recoil} = \Sigma_{i=n+1,N} P_{x(y)i}$ $\lambda_{1(2)}$ = Lagrange multiplier

Minimizing χ^2 respect to $\alpha_i \lambda_{1(2)}$ $2(\alpha_i - m_i)/\sigma_i^2 + \lambda_1 P_{xi} + \lambda_2 P_{yi} = 0$ $\alpha_i P_{xi} + P_x^{recoil} = 0$ $\alpha_i P_{vi} + P_v^{recoil} = 0$ The linear system can be written with a symmetric matrix (n+2,n+2) $c_1 0.... 0 P_{x1} P_{y1} \alpha_1 d_1$ $0 c_2 ... 0 P_{x2} P_{y2}$ $\begin{array}{rcl} \dots & c_n P_{xn} P_{yn} & \alpha_n &= d_n \\ \dots & 0 & 0 & \lambda_1 & -P_x^{\text{recoil}} \end{array}$ $0 0 \lambda_2 - P_v^{recoil}$ $ci = 2/\sigma_i^2$ $di = 2m_i/\sigma_i^2$

Fit pulls and Probability (n=6), anti-kT 0.5

MC (No PU) MC (2011 PU) Data (2011A Data DiJetAve30)

Minv_bb_MLP

