Analysis of the MSD calibration runs

Sofia Mazzolani, Ilaria Mattei, Leonello Servoli

02 April 2025

FOOT Physics Meeting

ComputeMsdPed.C

 quality control of the 6 sensors in time (calibration runs)

ComputeMsdPed.C

quality control of the 6 sensors in time

(calibration runs)

CNAO2024 run 7028 (5k events)

Pedestal

pedestal_channel_17_sensor_3 signal_channel_17_sensor_3 300 Entries 2500 600 5000 Entries Constant 296 Constant 602.7 489.8 Mean -0.1582 Mean Sigma 3.339 Sigma 3.305 250 500 200 400 Sigma=3.3 Mean=489.8 150 300 100 200 50 100 0<u>⊥</u> 460 520 ADC 30 ADC 470 480 490 500 510 -20 -10 10 20 0

Sensor 3 Strip 17

Distribution centered around zero

Signal - Pedestal

Common Noise calculation

Self tuning method: To prevent different noise - Considering a chip of 64 strips (0-63). characteristics due to hardware or environment factors. -From them excluding the lateral ones: left with (8-55) strips. -Also excluding the ones with ADC > 1.5*MIP ADC, with MIP ADC=18. To avoid including strips that for a Minimun Ionizing Particle. might contain real signals or very noisy strips. -Calculating the **baseline** on the (8-23) strips, minus the excluded, as the mean_(Signal - Pedestal). -From the remaining (24-55) strips, using only the ones with a value around the baseline (±3rms_(Signal – Pedestal)) to compute Common Noise. The rms il calculated on all the strips.

CNAO2024 run 7028 (5k events)

Common Noise 1

Signal – Pedestal – CN1

Sensor 3 Chip 0: strips (0-63) Strip 17

Sigma decreases, narrower distribution

Sigma(Signal – Ped – CN1) is Identification of Dead strips

sigma(Signal - Ped - CN)

Sofia Mazzo<u>lani</u>

Noise Threshold for a sensor i Identification of Noisy strips

Noise Threshold for a sensor in Identification of Noisy strips

CNAO2024 - run 7028 (5k events)

Final Threshold Noise: Thr=9.2

GSI2021 – run 4285 (5k events)

Nstrips > Nthr: Run 4285 - Campaign GSI2021

i strips > noise Thr: Run 4285 - Campaign GSI2021

Sensor 3 noisy in GSI2021

GSI2021 – run 4285

Sensor 5

Sigma(Ped)

-Jump of the signal every 128 strips -Firmware problem

ADC

Channel (Strip)

HIT2022 – run 4850

Sigma(Ped)

Sensor 5

Sigma(CN2) [0.3 ADC scale]

Sigma(Signal-Ped-CN2)

Problems: solved

CNAO2023 – run 5497

Sensor 5

3.4

3.2

2.6

0

64

Problem: solved (constant CN)

ADC

Channel (Strip)

Campaign Comparison (iii)

576 640

channel

CNAO2023 – run 6202

Sensor 0

2.6 2.4 2.2 2 2 1.8 0 64 128 192 256 320 384 448 512

Sensor 5

Sigma(Signal-Ped-CN2)

-No changes in the sigmas

CNAO2024 – run 7028

Sensor 0

Sigma(Signal-Ped-CN2)

Sensor 5

Sigma(Signal-Ped-CN2)

Sofia Mazzolani

15/17

Campaign Comparison (iii)

CNAO2023 – run 6202

Sigma signalCN: Run 6202 - Campaign CNAO2023

CNAO2024 – run 7028

Sigma signalCN: Run 7028 - Campaign CNAO2024

Sofia Mazzolani

Entries

10²

10

1<u></u>

0

Conclusion

-ComputeMsdPed.C is an efficient macro for the study of calibration runs

-MSD detector seems to behave consistently through each data taking campaign analyzed up to now

Next work

-List of good calibration runs for each campaign

-Start working on clusters (physics runs)

-Make the support apparatus more hermetic for the next data taking

Thank you for listening!