

Mass reconstruction @ CNAO2024 MC vs data comparison

B. Spadavecchia on behalf of the Turin group

Mass reconstruction @ CNAO2024

TW point and CALO cluster are matched according to minimum distance criterion.

Two TW hits (bars on) form a TW-point >> TOF, Z and $(X,Y)_{TW}$ coordinates are assigned.

$$A[u] = \frac{E_{kin}[MeV]}{f(\gamma - 1)c^2} \qquad f = \frac{0.931494 \, MeV}{u * c^2}$$

 E_{kin} obtained from CALO clusters $\rightarrow Z$ from the TW point is required for calibration.

γ is obtained from β = L / TOF, where: - L is the TG-TW point distance; - TOF = TOF_{TW-SC} – TOF_{SC-TG}, where TOF_{TW-SC} is averaged on the two hits.

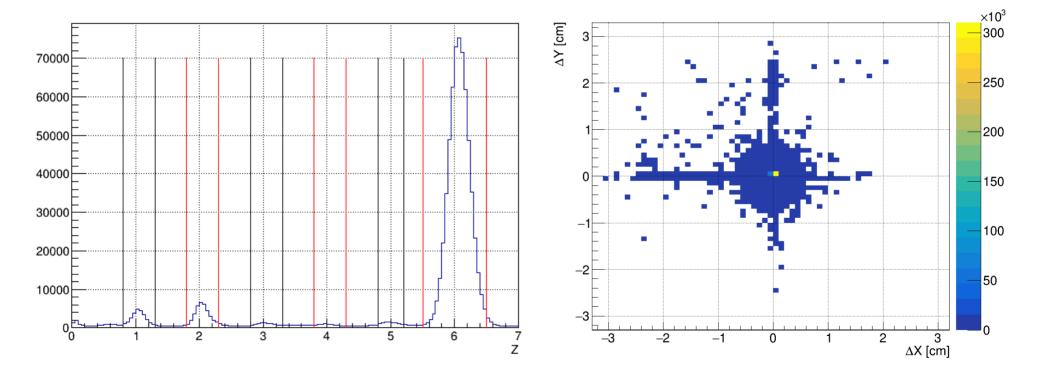
If multiple energy losses in same bar, n. active X-bars ≠ n. active Y-bars

 \rightarrow Z is assigned by the layer with most hits.

Calibration status

0	1	2	ę	9	10	11	18	19	20	27	28	29	36	37	38	45	46	47	0	1	2	9	10	11	18	19	20	27	28	29	36	37	38	45	46	47	
3	4	5	1	12	13	14	21	22	23	30	31	32	39	40	41	48	49	50	3	4	5	12	13	14	21	22	23	30	31	32	39	40	41	48	49	50	
6	7	8	1	15	16	17	24	25	26	33	34	35	42	43	44	51	52	53	6	7	8	15	16	17	24	25	26	33	34	35	42	43	44	51	52	53	
54	55	56	6	53	64	65	72	73	74	81	82	83	90	91	92	99	100	101	54	55	56	63	64	65	72	73	74	81	82	83	90	91	92	99	100	lacking poi	nts
57	58	59	6	66	67	68	75	76	77	84	85	86	93	94	95	102	103	104	57	58	59	66	67	68	75	76	77	84	85	86	93	94	95	102	103	104	
60	61	62	6	59	70	71	78	79	80	87	88	89	96	97	98	105	106	107	60	61	62	69	70	71	78	79	80	87	88	89	96	97	98	105	106	107 few statistic	CS
108	109	110	0 11	17 1	18	119	126	127	128	135	136	137	144	145	146	153	154	155	108	109	110	117	118	119	126	127	128	135	136	137	144	145	146	153	154	155	
111	112	113	3 12	20 1	21	122	129	130	131	138	139	140	147	148	149	156	157	158	111	112	113	120	121	122	129	130	131	138	139	140	147	148	149	156	157	not respon	dina
114	115	110	6 12	23 1	24	125	132	133	134	141	142	143	150	151	152	159	160	161	114	115	116	123	124	125	132	133	134	141	142	143	150	151	152	159	160		ung
162	163	164	4 17	71 1	.72	173	180	181	182	189	190	191	198	199	200	207	208	209	162	163	164	171	172	173	180	181	182	189	190	191	198	199	200	207	208	209	
165	166	167	7 17	74 1	75	176	183	184	185	192	193	194	201	202	203	210	211	212	165	166	167	174	175	176	183	184	185	192	193	194	201	202	203	210	211	²¹² 3 points av	ailable
168	169	170	0 17	77 1	78	179	186	187	188	195	196	197	204	205	206	213	214	215	168	169	170	177	178	179	186	187	188	195	196	197	204	205	206	213	214	215	
216	217	218	8 22	25 2	26	227	234	235	236	243	244	245	252	253	254	261	262	263	216	217	218	225	226	227	234	235	236	243	244	245	252	253	254	261	262	²⁶³ 4 points wi	th 5%
219	220	221	1 22	28 2	29	230	237	238	239	246	247	248	255	256	257	264	265	266	219	220	221	228	229	230	237	238	239	246	247	248	255	256	257	264	265	266	
222	223	224	4 23	31 2	32	233	240	241	242	249	250	251	258	259	260	267	268	269	222	223	224	231	232	233	240	241	242	249	250	251	258	259	260	267	268	4 points av	ailahle
270	271	272	2 27	79 2	80	281	288	289	290	297	298	299	306	307	308	315	316	317	270	271	272	279	280	281	288	289	290	297	298	299	306	307	308	315	316		
273	274	275	5 28	82 2	83	284	291	292	293	300	301	302	309	310	311	318	319	320	273	274	275	282	283	284	291	292	293	300	301	302	309	310	311	318	319	320	
276	277	278	8 28	85 2	86	287	294	295	296	303	304	305	312	313	314	321	322	323	276	277	278	285	286	287	294	295	296	303	304	305	312	313	314	321	322	323	

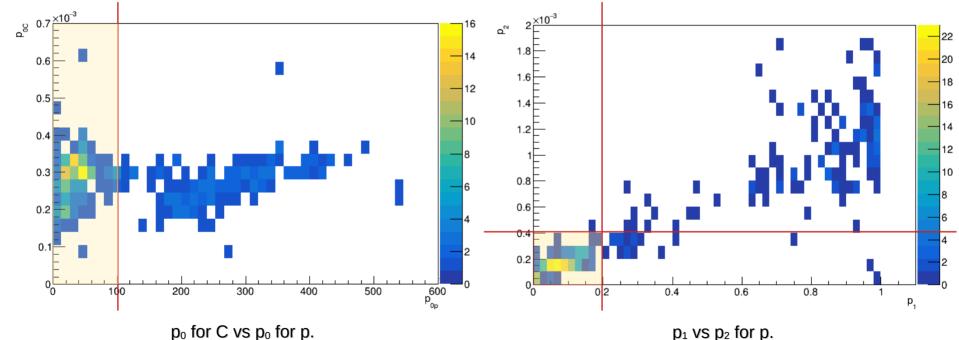
Carbon


Proton

Mass reconstruction @ CNAO2024

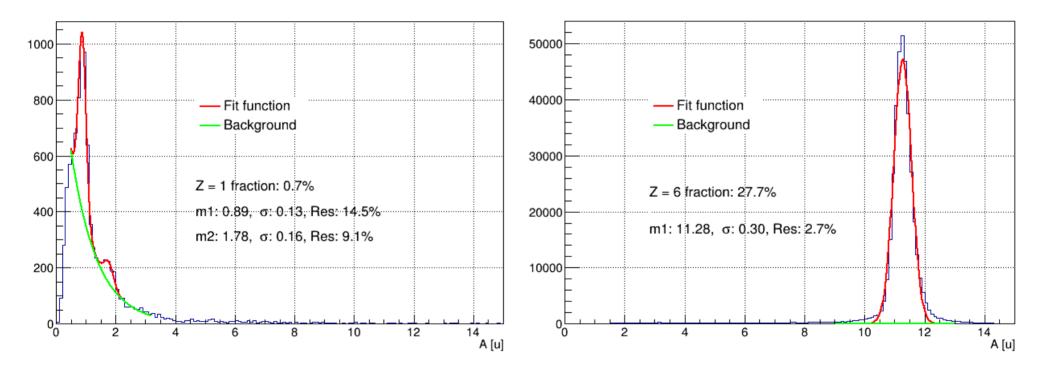
Z distribution for \approx 800k fragmentation events \rightarrow thresholds on Z selection.

After the energy equalization, the shift in (X,Y) is < 0.1 cm for 80% of the clusters \rightarrow threshold on cluster selection.



Mass reconstruction @ CNAO2024

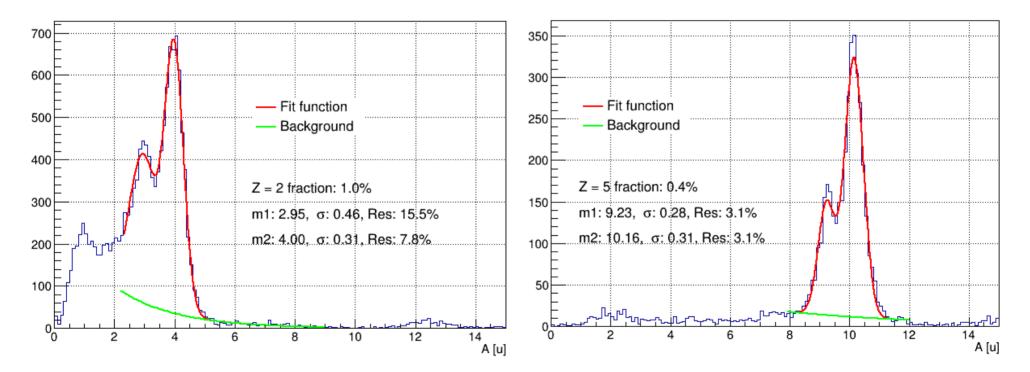
Best-fit MBF parameters for p have wider dispersion than for C \rightarrow further selection on crystals. "Outliers" must be cured separately.



 $p_1 vs p_2$ for p.

p and C reconstruction @ CNAO2024

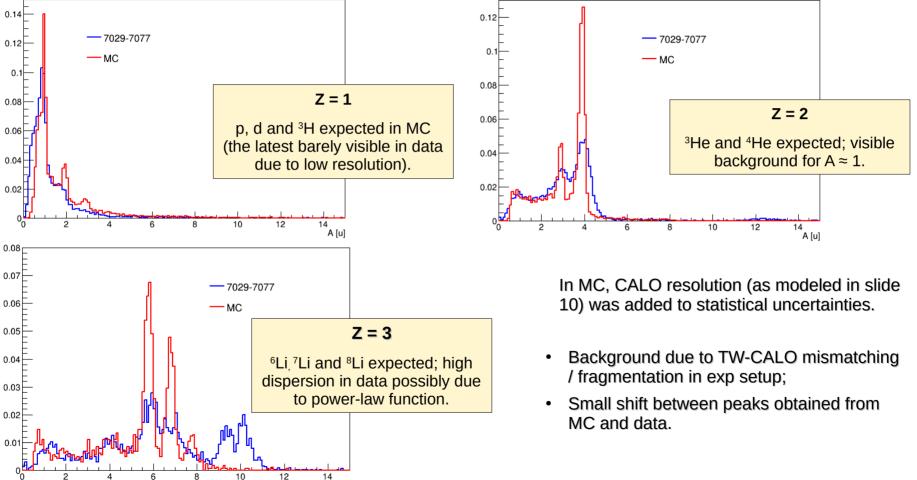
For p and C, kinetic energy directly reconstructed \rightarrow p, d and ¹²C were identified (with resolution < 3% in the 2nd case).


Reconstructed mass peaks were fitted with a gaussian function + decreasing exponential background.

He and B reconstruction @ CNAO2024

³He, ⁴He, ¹⁰B and ¹¹B were reconstructed via **power law function (no direct reconstruction was available).** For Be, resolution **between 8-16%**. For B, resolution \approx **3%**.

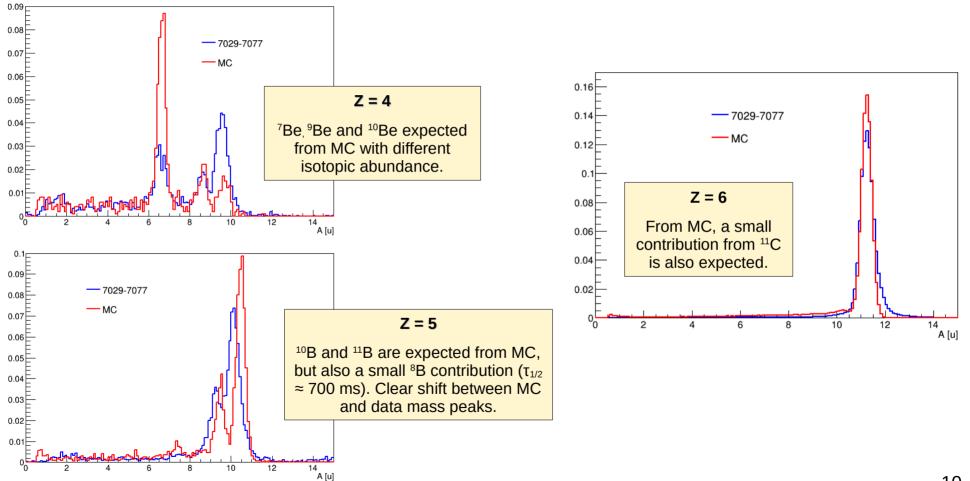
Li and Be reconstruction @ CNAO2024



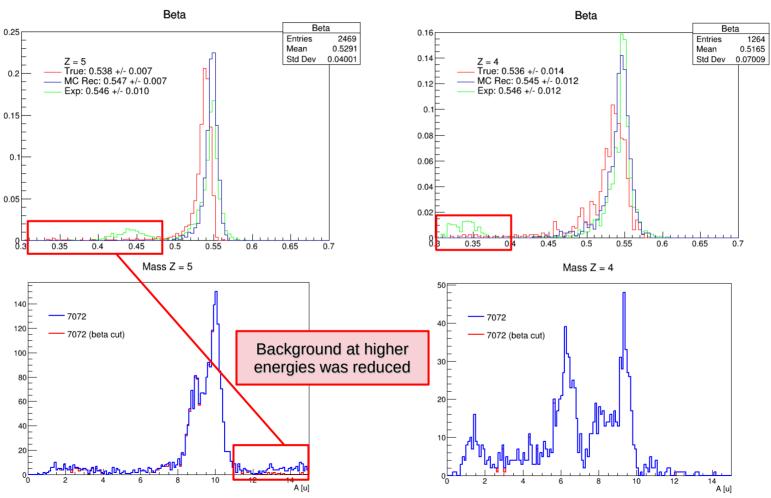
Reconstruction via power-law is worse for $Z = 3 \rightarrow \text{only } {}^{6}\text{Li}$, with 7% resolution. For Z = 4, ${}^{7}\text{Be}$, ${}^{9}\text{Be}$, ${}^{10}\text{Be}$ identified with < 5% resolution.

120 90 Fit function 80 Background 100 Fit function 70 Background Z = 4 fraction: 0.2% 80 m1: 6.60, c: 0.31, Res: 4.7% 60 m2: 8.59, σ: 0.23, Res: 2.7% Z = 3 fraction: 0.3% 50 m2: 9.57, σ: 0.29, Res: 3.0% m1: 5.95, σ: 0.42, Res: 7.1% 60 40 30 40 Л UV. 20 20 ᠋ 10 ᠾᡣ᠇<u>ᢤ᠓᠊</u>ᠳᠣ 0 2 6 8 10 12 4 2 8 10 12 14 ň 6 4 A [u] A [u] Possible Be contamination

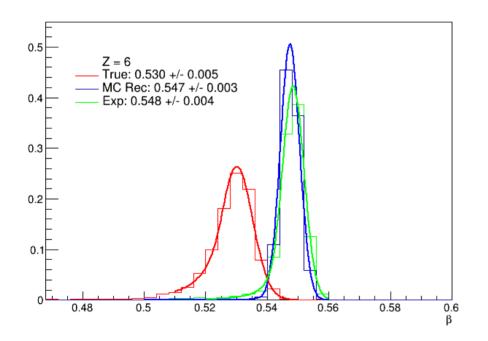
Mass comparison (MC vs data)



. A [u]


Mass comparison (MC vs data)

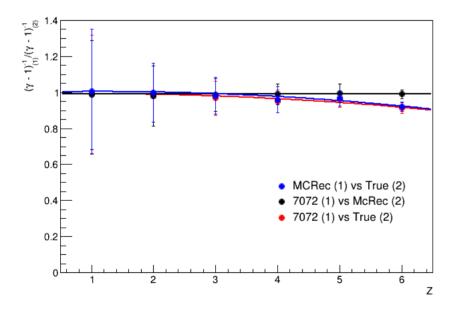
Beta cut at lower values



Clear underestimation of mass peak values \rightarrow let's compare data reconstruction and FLUKA MC simulation.

For ¹²C, MC-truth shows that Lorentz velocity is underestimated in both reconstructions.

 β = L/TOF, assuming uniform fragments velocities, neglects energy losses through 3 tracking layers $\rightarrow \beta$ overestimation $\rightarrow (\gamma-1)^{-1}$ underestimated up to 8-9%.

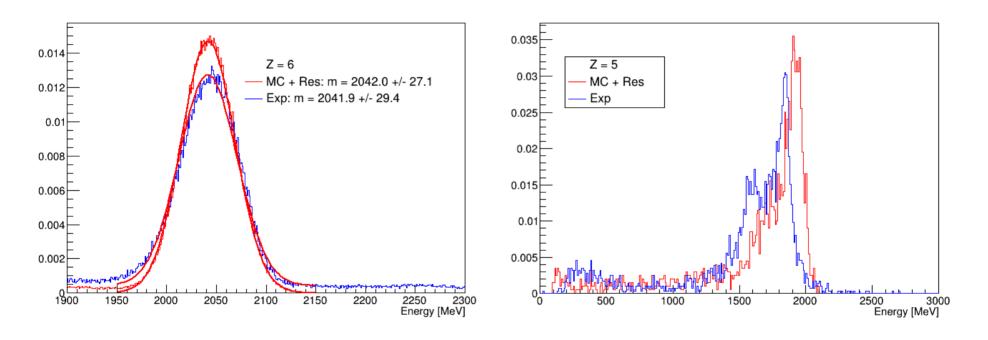

From now on, all histograms are normalized with respect to their integral.

β effect on mass underestimation

 β = L/TOF, assuming uniform fragments velocities, neglects energy losses through 3 tracking layers $\rightarrow \beta$ overestimation $\rightarrow (\gamma-1)^{-1}$ underestimated up to 8-9%.

Given $K = (\gamma - 1)^{-1}$, this plot shows:

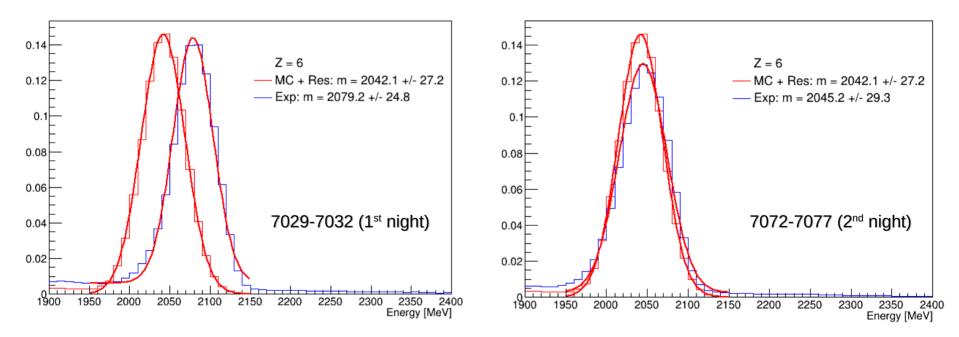
- in **blue**, K_{MCRec} / K_{true} , fitted with a 2nd order function with $p_0 = 1$ (no reconstruction error in absence of e.m. losses); dependence on Z² is expected based on Bethe-Bloch formula;


- in **black** K_{7072}/K_{MCRec} (7072 refers to a single fragmentation run), fitted with a uniform function $y = a_0$ (systematic error is expected); results $a_0 \approx 99.0\%$

-in red, K_{7072}/K_{True} , fitted with a 2nd order function having $p_0 = a_0$ (only systematic error in absence of e.m. losses).

At lower Z, uncertainties on β are ~ 10 times higher than at Z = 6 \rightarrow however, β is most likely the main source of underestimation of nominal mass values.

E_{kin} effect on mass underestimation


For Z = 6 MC E_{kin} distribution is well modeled by data (referred to run 7072).

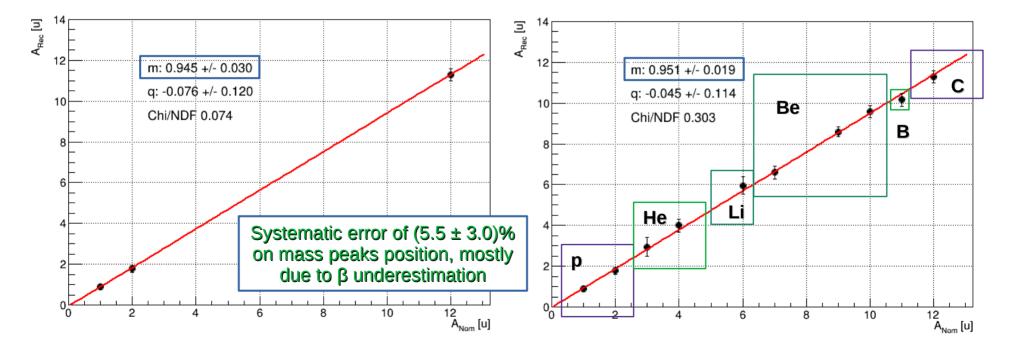
For Z = 5, instead, there is a visible shift in the spectra \rightarrow possibly, residual error due to power-law based calibration with respect to Z.

E_{kin} effect on mass underestimation

Previously, we only considered run 7072 for its higher statistics. Let's consider now all runs from 7029 to 7072.

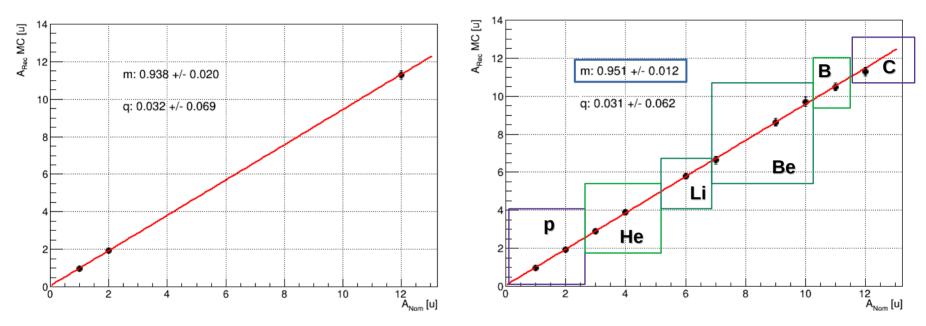
When considering all runs, there is a shift between MC and data peaks \rightarrow to be investigated (different beam energy? Temperature shift?...)

Reconstructed vs nominal A (in data)

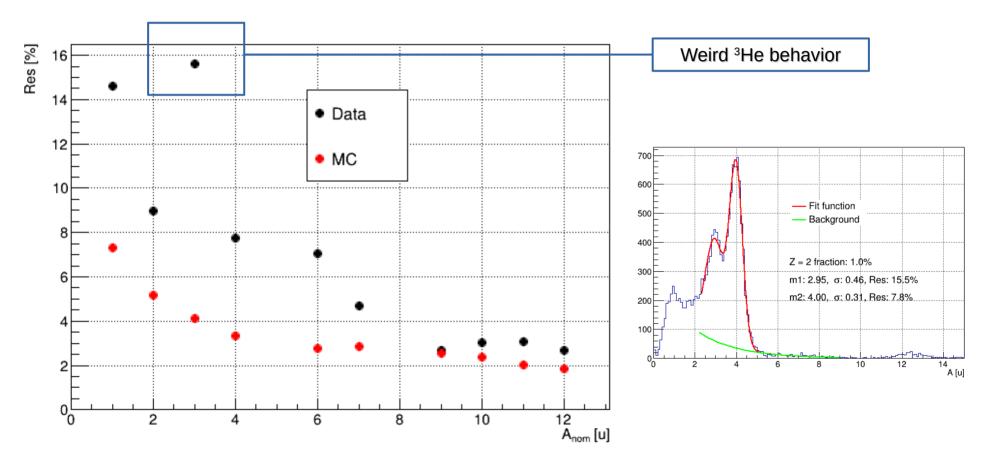


CALO calibration with respect to

Z is meaningful!


A linear relationship was found between reconstructed and nominal mass peaks, and the offset is given by the same correction factor *m* obtained from p, d and ¹²C only.

Reconstructed vs nominal A (in MC)


MC estimates an error on p, d, ¹²C mass peak positions of $(6.4 \pm 2.0)\% \rightarrow$ higher than data.

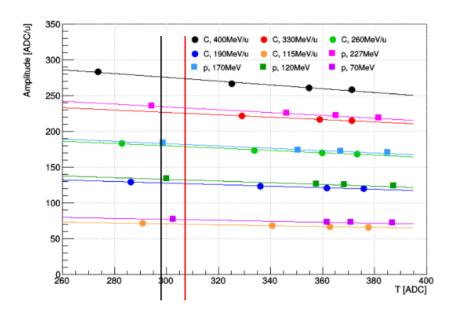
However, considering the same peaks analyzed in fragmentation runs, overall better agreement between A_{rec} and A_{nom} and between MC and data \rightarrow systematic, beta-driven error as given by MC is (4.9 ± 1.2)%, considering CALO as the only experimental error source.

Mass resolution in data vs MC

Conclusion

Many aspects in reconstruction need special care:

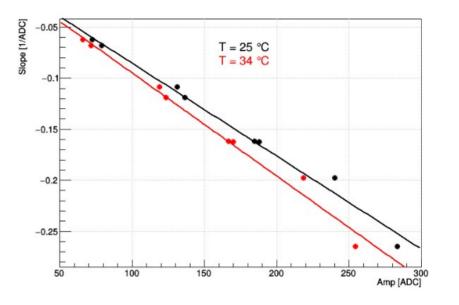
- crystals with unsuccessful calibration / weakly correlated MBF parameters were excluded;
- possible Z misidentification (due to TW-CALO matching, thresholds, "most-hit-layer" assumption, ...);
- power-law based calibration with Z \rightarrow non-negligible impact on peak shifts and resolution;
- approximated trajectory (due to unavailability of full tracking system);
- uniform velocity approximation \rightarrow systematic mass underestimation;
- fragmentation in setup + mismatching \rightarrow background;
- more experimental uncertainties must be included in MC simulation;
- ...


In spite of all these conditions, mass distributions were obtained from Z = 1 to Z = 6, and the discrepancy between nominal and reconstructed mass peaks can be modeled by a linear correction factor of < 10%.

- \rightarrow All possible sources leading to a worsening in mass resolution must be investigated;
- \rightarrow Optimization of CALO calibration parameters is needed (especially for excluded crystals).

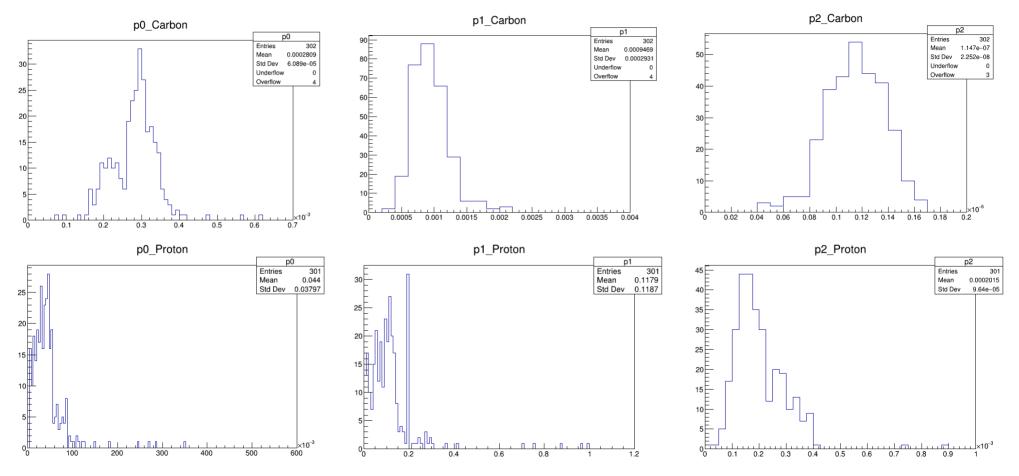
Backup slides

T correction



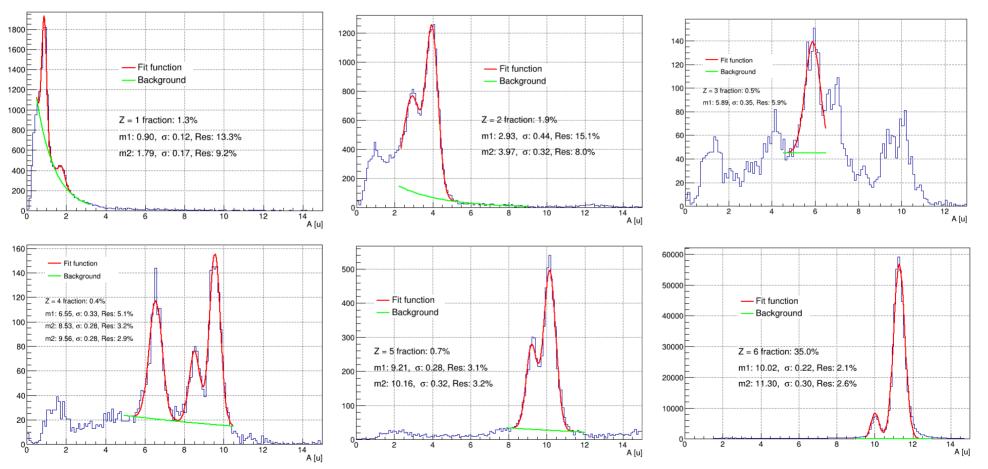
We know that ADC response decreases with T depending on the primary beam energy.

For a given ADC value, then, $m(ADC) = m_1(ADC)$ + $(T_0 - T_1) * [m_2(ADC) - m_1(ADC)] / [T_2 - T_1]$, with: m_1 slope @ $T_1 = 25^{\circ}C$, m_2 slope @ $T_2 = 34^{\circ}C$ and T_0 is the reference temperature. Slope vs amplitude (ADC) was plotted @ two fixed temperatures, for a single crystal.

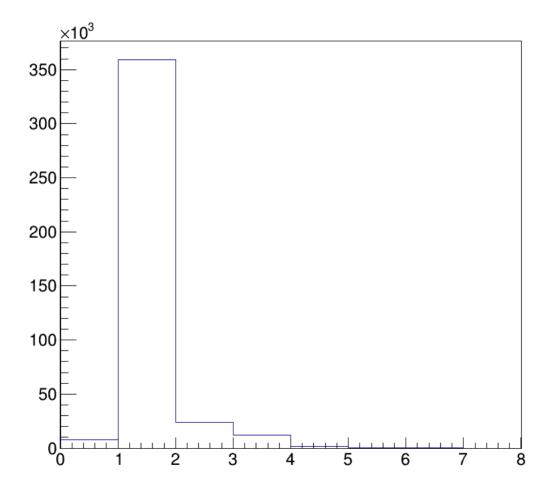

As $T_{ref} = T_0 I$ took the average temperature during calibration runs for each crystal.

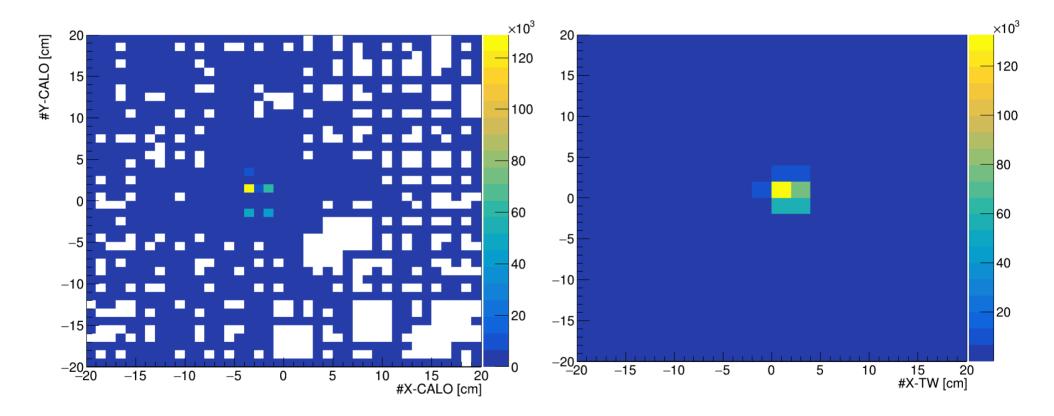
 $ADC(T) = ADC(T_0) + m(ADC) * (T-T_0)$

MBF distributions

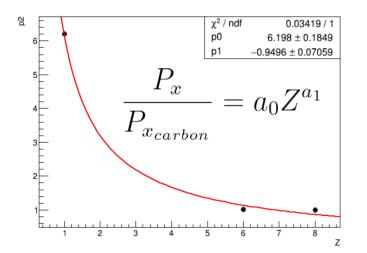


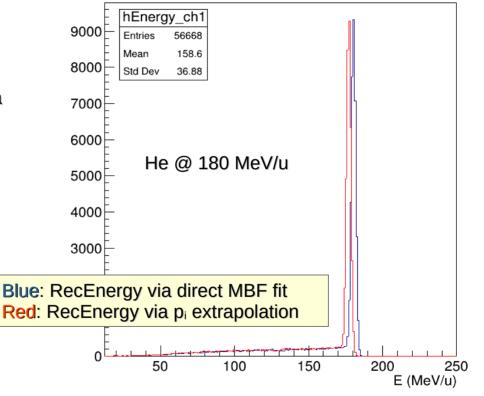
23


Mass distributions without MBF cuts



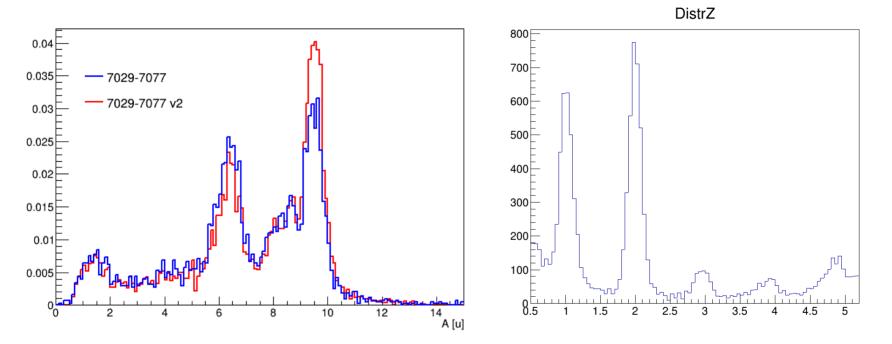
Clusters and TW points distribution


MBF dependency from Z



During a testing run in Heidelberg (2022) we irradiated a single crystal with p, He, C and O.

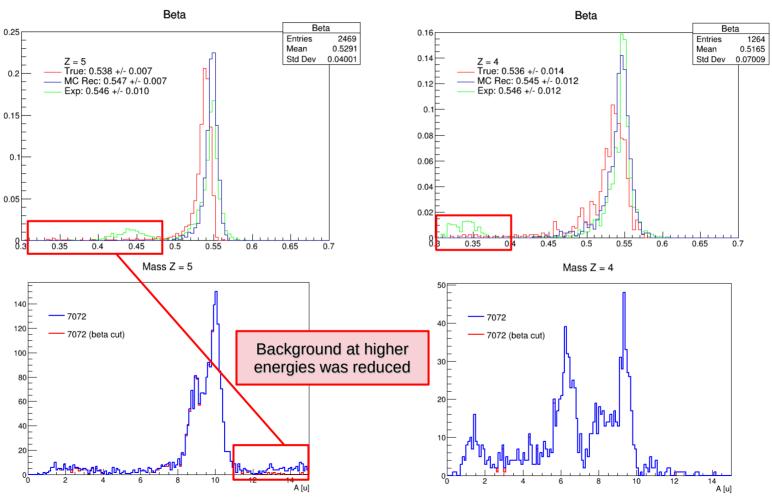
We tried fitting each MBF parameters p_i , normalized with respect to its value for C, via a power-law function with parameters $(a_0, a_1)_{pi}$.



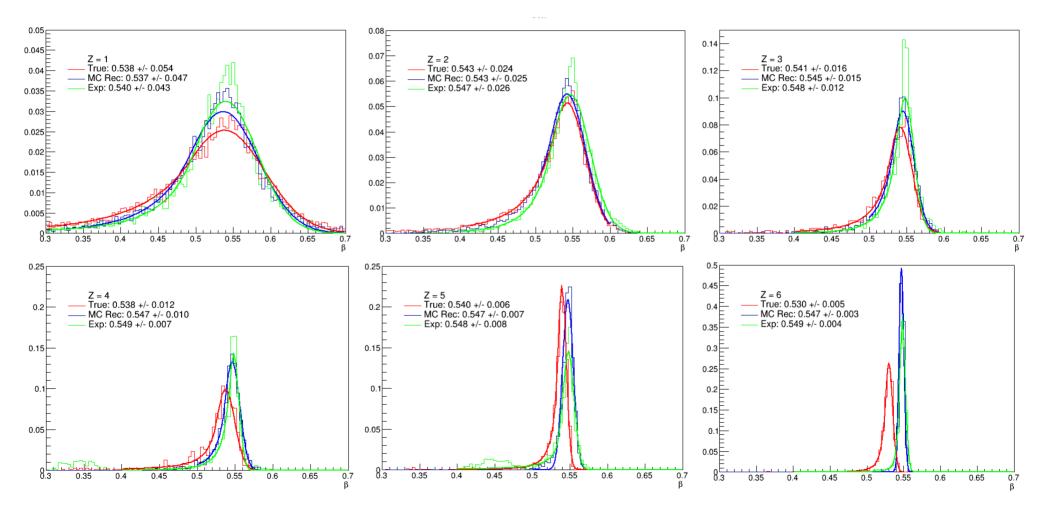
Since the trend was well modeled, we then extracted a_0 , a_1 without He and obtained MBF parameters for He on the same crystal.

Accuracy on reconstructed p_i has small impact on peak reconstruction. However, power-law parameters are different for each crystal.

Alternate Z selection (Z = 4 case)



- Z assigned according to the minimum dE/dx between the two TW hits
- \rightarrow Z systematic underestimation;
- \rightarrow no significative improvement in resolution / isotope distribution.


Beta cut at lower values

Beta comparison (MC vs data)

