Attractors & Universality in 3+1D Relativistic Boltzmann Transport

Vincenzo Nugara

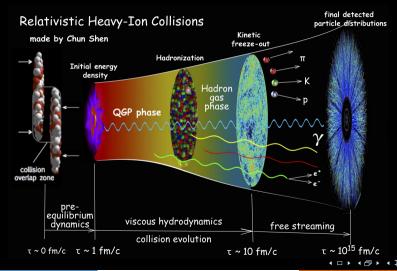
mostly based on:

V. Nugara, S. Plumari, L. Oliva, and V. Greco, Eur. Phys. J. C 84 (2024) 8, 861;
V. Nugara, S. Plumari, V. Greco Eur. Phys. J. C 85 (2025) 3, 311
V. Nugara, S. Plumari, V. Greco, N. Borghini in preparation

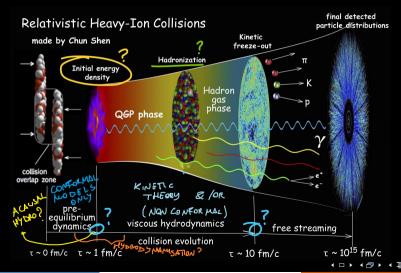
Meeting of the SIM and PRIN 2022SM5YAS projects

Torino, July 2-3

ultra-Relativistic Heavy-Ion Collisions...

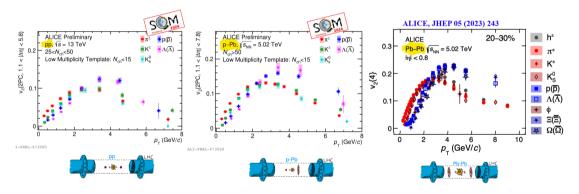


ultra-Relativistic Heavy-Ion Collisions...



...but not only

Collectivity signatures observed also in small systems (pp and pA)



(You Zhou, Collectivity in high energy proton proton collisions, SQM2024)

Good description by hydrodynamics!

Attractors

What is an attractor?

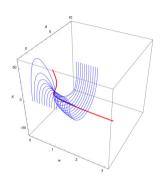
Subset of the phase space to which all trajectories converge

Why do we look for attractors?

- Uncertainties in initial conditions affect final observables? Memory of initial conditions?
- Attractors and hydrodynamisation (small systems
- Universality as a hint for collective phenomena

Where do we look for attractors?

- Full distribution function f(x, p)
- Moments of f(x, p) and anisotropic flows v_n



Jankowski, Spalinski, Hydrodynamic attractors in

Attractors

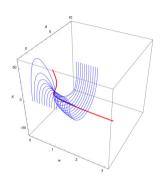
What is an attractor?

Subset of the phase space to which all trajectories converge

Why do we look for attractors?

- Uncertainties in initial conditions affect final observables? Memory of initial conditions?
- Attractors and hydrodynamisation (small systems)
- Universality as a hint for collective phenomena

- Full distribution function f(x, p)
- Moments of f(x, p) and anisotropic flows v_n



Jankowski, Spalinski, Hydrodynamic attractors in

Attractors

What is an attractor?

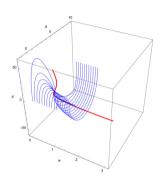
Subset of the phase space to which all trajectories converge

Why do we look for attractors?

- Uncertainties in initial conditions affect final observables? Memory of initial conditions?
- Attractors and hydrodynamisation (small systems)
- Universality as a hint for collective phenomena

Where do we look for attractors?

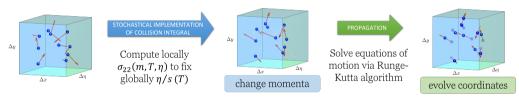
- Full distribution function f(x, p)
- Moments of f(x, p) and anisotropic flows v_n



Jankowski, Spalinski, Hydrodynamic attractors in

Relativistic Boltzmann Transport (RBT) Code

- Solve Boltzmann Equation: $p^{\mu}\partial_{\mu}f(x,p) = C_{2\leftrightarrow 2}[f(x,p)]_{p}$
- Large number of Test Particles sample the distribution function

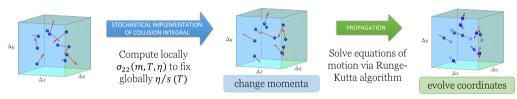


Unique tool from $\eta/s \lesssim 1/4\pi$ (hydro limit) to $\eta/s \to +\infty$ (free streaming limit)

Preserving causality by construction: Particles velocity < c, $\Delta t > \Delta x$

Relativistic Boltzmann Transport (RBT) Code

- Solve Boltzmann Equation: $p^{\mu}\partial_{\mu}f(x,p) = C_{2\leftrightarrow 2}[f(x,p)]_{p}$
- Large number of Test Particles sample the distribution function



Unique tool from $\eta/s \lesssim 1/4\pi$ (hydro limit) to $\eta/s \to +\infty$ (free streaming limit)

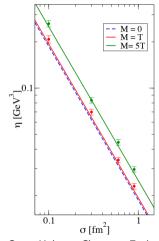
Preserving causality by construction: Particles velocity $\leq c$, $\Delta t > \Delta x$

Fixing η/s

- $2 \leftrightarrow 2$ collisions \Rightarrow Particle conservation \Rightarrow Fugacity $\neq 1$.
- Test particles can collide with probability $P_{22} \propto \sigma_{22}(x)$ Notice: They are not physical collisions, but a numerica method to implement $C_{22}[f(x,p)]_p$
- Fix σ_{22} (total cross section) locally via the Champan-Enskog formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012)):

$$\eta = f(m/T) \frac{T}{\sigma_{22}} \stackrel{m=0}{=} 1.2 \frac{T}{\sigma_{22}} \Rightarrow \sigma_{22}(x) = 1.2 \frac{T(x)}{\eta/s \ s(x)}$$

 $\eta/s \to 0$: ideal hydro; $\eta/s \to \infty$: free streaming $(\eta/s)_{\rm QGP} \sim 1/4\pi$: most ideal fluid!



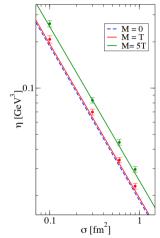
Green-Kubo vs Chapman-Enskog estimations of η .

Fixing η/s

- $2 \leftrightarrow 2$ collisions \Rightarrow Particle conservation \Rightarrow Fugacity $\neq 1$.
- Test particles can collide with probability $P_{22} \propto \sigma_{22}(x)$ Notice: They are not physical collisions, but a numerical method to implement $C_{22}[f(x,p)]_p$
- Fix σ_{22} (total cross section) locally via the Champan-Enskog formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012)):

$$\eta = f(m/T) \frac{T}{\sigma_{22}} \stackrel{m=0}{=} 1.2 \frac{T}{\sigma_{22}} \Rightarrow \sigma_{22}(x) = 1.2 \frac{T(x)}{\eta/s \ s(x)}$$

 $\eta/s \to 0$: ideal hydro; $\eta/s \to \infty$: free streaming $(\eta/s)_{\rm QGP} \sim 1/4\pi$: most ideal fluid!



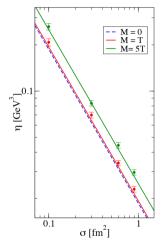
Green-Kubo vs Chapman-Enskog estimations of η .

Fixing η/s

- $2 \leftrightarrow 2$ collisions \Rightarrow Particle conservation \Rightarrow Fugacity $\neq 1$.
- Test particles can collide with probability $P_{22} \propto \sigma_{22}(x)$ Notice: They are not physical collisions, but a numerical method to implement $C_{22}[f(x,p)]_p$
- Fix σ_{22} (total cross section) locally via the Champan-Enskog formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012)):

$$\eta = f(m/T) \frac{T}{\sigma_{22}} \stackrel{m=0}{=} 1.2 \frac{T}{\sigma_{22}} \Rightarrow \sigma_{22}(x) = 1.2 \frac{T(x)}{\eta/s \ s(x)}$$

 $\eta/s \to 0$: ideal hydro; $\eta/s \to \infty$: free streaming $(\eta/s)_{QGP} \sim 1/4\pi$: most ideal fluid!



Green-Kubo vs Chapman-Enskog estimations of η .

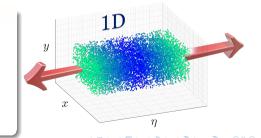
Code setup for 1D boost-invariant systems (Bjorken flow)

- Conformal system (m = 0)
- One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.
- Boost-invariance. No dependence on η_s $dN/d\eta_s = \text{const.}$ in $[-\eta_{s_{\text{max}}}, \eta_{s_{\text{max}}}]$
- Normalised moments: $\overline{M}^{nm}(x) = \frac{\int dP (p \cdot u)^n (p \cdot z)^{2m} f(x, p)}{\int dP (p \cdot u)^n (p \cdot z)^{2m} f_{eq}(x, p)}$ (e.g. $\overline{M}^{01} = P_L/P_{eq}$)

Romatschke-Strickland Distribution Function

$$f_0(\mathbf{p}; \gamma_0, \Lambda_0, \xi_0) = \gamma_0 \exp\left(-\frac{1}{\Lambda_0} \sqrt{p_\perp^2 + p_w^2 (1 + \xi_0)}\right)$$

where $p_{\perp}^2 = p_x^2 + p_y^2$ and $p_w = (p \cdot z)$ ξ_0 fixes initial P_L/P_T , γ_0 and Λ_0 fix initial ε and n



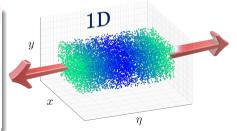
Code setup for 1D boost-invariant systems (Bjorken flow)

- Conformal system (m = 0)
- One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.
- Boost-invariance. No dependence on η_s $dN/d\eta_s = \text{const.}$ in $[-\eta_{s_{\text{max}}}, \eta_{s_{\text{max}}}]$
- Normalised moments: $\overline{M}^{nm}(x) = \frac{\int dP (p \cdot u)^n (p \cdot z)^{2m} f(x, p)}{\int dP (p \cdot u)^n (p \cdot z)^{2m} f_{eq}(x, p)}$ (e.g. $\overline{M}^{01} = P_L/P_{eq}$)

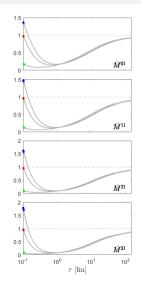
Romatschke-Strickland Distribution Function

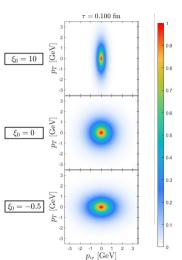
$$f_0(\mathsf{p};\gamma_0,\Lambda_0,\xi_0) = \gamma_0 \exp\left(-rac{1}{\Lambda_0}\sqrt{p_\perp^2 + p_w^2(1+\xi_0)}
ight)$$

where $p_{\perp}^2 = p_{\times}^2 + p_{\vee}^2$ and $p_{w} = (p \cdot z)$ ξ_0 fixes initial P_L/\dot{P}_T , γ_0 and Λ_0 fix initial ε and η

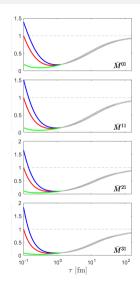


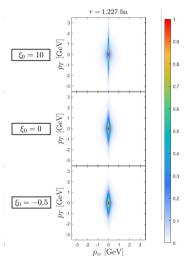
• At $\tau=\tau_0$, three different distributions in momentum space: oblate $(\xi_0=10)$, spherical $(\xi_0=0)$ and prolate $(\xi_0=-0.5)$.



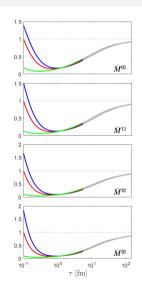


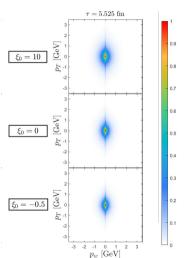
- Already at $\tau \sim 1$ fm, strong initial longitudinal expansion brings the system away from equilibrium
- Distribution functions have similar (but not identical) shape.



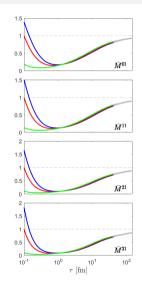


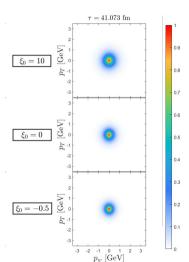
- At $\tau \sim$ 5 fm, clear universal behaviour also for the distribution functions.
- Two components: strongly peaked p_w distribution and a more isotropic one (Strickland, JHEP 12, 128)





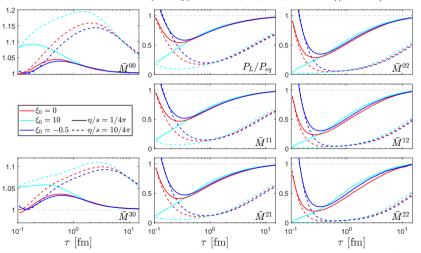
 For large τ the system is almost completely thermalized and isotropized.





Forward Attractor vs au

Different initial anisotropies $\xi_0 = -0.5, 0, 10, \infty$, for $\eta/s = 1/4\pi$ and $\eta/s = 10/4\pi$.



- $\eta/s = 1/4\pi$: attractor at $\tau \sim 0.5$ fm
- $\eta/s=10/4\pi$: attractor at $au\sim 1.0$ fm
- Not 10 times larger!
- Less collisions to reach the attractor?
- Different attractors for different η/s ?

Mean free time & Pull-back attractors

Only one relevant time-scale

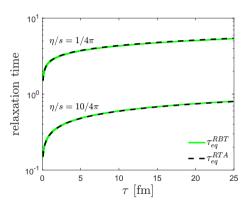
Mean free time

$$au_{coll} = rac{1}{2} \left(rac{1}{N_{
m part}} rac{\Delta N_{
m coll}}{\Delta t}
ight)^{-1}$$

Notice: $\tau_{coll} \propto \lambda_{mfp}$

$$au_{eq}^{RBT} \equiv rac{3}{2} au_{coll} = au_{tr} = au_{eq}^{ ext{RTA}} = rac{5\eta/s}{T}$$

(Denicol et al.PRD 83, 074019)



Same relaxation time as RTA

Mean free time & Pull-back attractors

Only one relevant time-scale

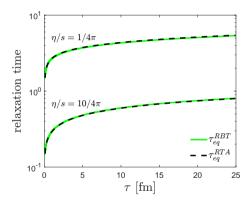
Mean free time

$$au_{coll} = rac{1}{2} \left(rac{1}{ extsf{N}_{\mathsf{part}}} rac{\Delta extsf{N}_{\mathsf{coll}}}{\Delta t}
ight)^{-1}$$

Notice: $\tau_{coll} \propto \lambda_{mfp}$.

$$au_{eq}^{RBT} \equiv rac{3}{2} au_{coll} = au_{tr} = au_{eq}^{\mathsf{RTA}} = rac{5\eta/s}{T}$$

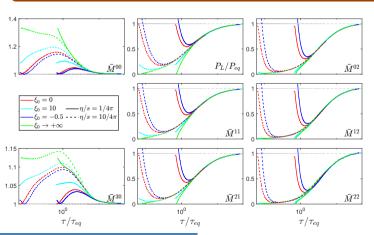
(Denicol et al.PRD 83, 074019)



Same relaxation time as RTA

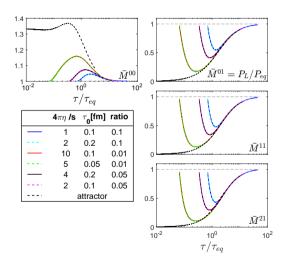
Mean free time & Pull-back attractors

Only one relevant time-scale \implies Solution rescaling: Pull-back attractor



- Unique attractor!
- $\eta/s=1/4\pi$: attractor at $au\sim 1.5\, au_{eq}$
- $\eta/s = 10/4\pi$: attractor at $au \sim 0.2\, au_{eq}$
- Initial free streaming expansion

Universality in 1D

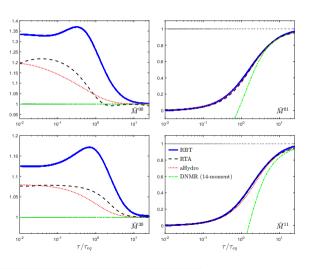


- Fix $(\tau/\tau_{eq})_0 = \tau_0 T_0/(\eta/s) \Longrightarrow$ same results in terms of scaled time τ/τ_{eq}
- Same in RTA and hydro. In DNMR $\bar{w}\equiv \frac{\tau\,T}{5\eta/s}$ and $\varphi=\frac{\pi}{4\varepsilon}+\frac{2}{3}$:

$$\begin{cases} \bar{w}\varphi\varphi' + 4\varphi^2 + (\bar{w} - \frac{34}{7})\varphi - \frac{442}{315} - 2\frac{\bar{w}}{3} = 0\\ \varphi(\bar{w}_0) = \varphi_0 \end{cases}$$

(Strickland et al.PRD 97 036020 (2018))

Comparison with different models



Who is *the* attractor? Go to the limit $\xi_0 \to \infty$ ($P_L \to 0$), $(\tau/\tau_{eq})_0 = \tau_0 T_0/(\eta/s) \to 0$; in agreement with RTA and aHydro (M. Strickland *et al.PRD* 97, 036020 (2018),

• Very good agreement with other models for M^{nm} , n > 0, get slightly worse for higher order moments

P. Romatschke PRL 120, 012301 (2018))

• Worse agreement for M^{0m} : sensitivity to slowly thermalising particles with $p_z \sim 0$

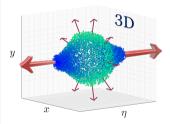
Code setup for 3D systems

- Conformal system (m = 0)
- Relax boundary conditions in the transverse plane \implies Transverse expansion

Romatschke-Strickland Distribution Function

$$f_0(x, p) = \gamma_0 \exp\left(-\frac{\sqrt{p_T^2 + p_w^2(1 + \xi_0)}}{\Lambda_0}\right) e^{-x_\perp^2/R^2} \theta(2.5 - |\eta_s|)$$

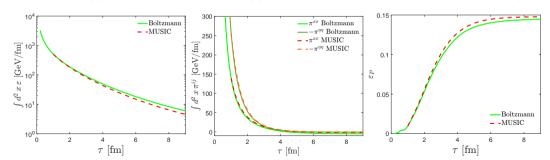
- γ_0 and Λ_0 fix initial ε and n (Landau matching conditions);
- ξ_0 fixes initial P_L/P_T
- Gaussian distribution in the transverse plane
- Uniform distribution in η_s : [-2.5, 2.5]



Comparison with hydro

Very good agreement with 3D conformal hydro (MUSIC) with $\eta/s = 1/(4\pi)$:

- ullet Matching time at 1.0 fm via full $T^{\mu
 u}$
- Conformal EOS, same $\eta/s = 1/4\pi$
- Fugacity: $\Gamma(t) \neq 1$ in Boltzmann $\neq \Gamma(t) = 1$ in hydro.



0 < t < R

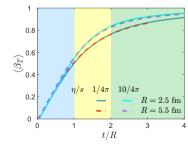
 $\begin{array}{l} {\sf Longitudinal} \\ {\sf expansion} \ (\sim 1{\sf D}) \end{array}$

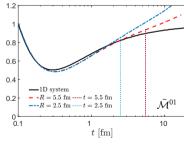
t > R

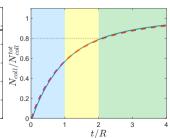
Onset of transverse expansion

t > 2R

Quasi free streaming $(\langle \beta_{\perp} \rangle > 0.8)$







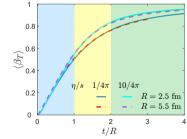
0 < t < R

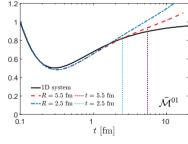
Longitudinal expansion (\sim 1D)

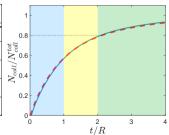
t > F

Onset of transverse expansion

Quasi free streaming $(\langle \beta_{\perp} \rangle > 0.8)$







0 < t < R

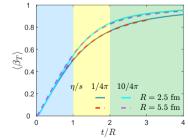
Longitudinal expansion (\sim 1D)

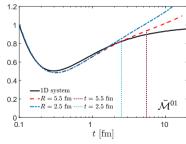
t > R

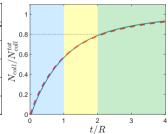
Onset of transverse expansion

t > 2R

Quasi free streaming ($\langle \beta_{\perp} \rangle > 0.8$)

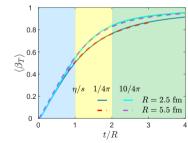


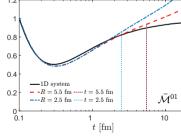


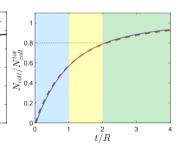


New relevant time/length scale

Transverse dimension R







Boltzmann Equation in Relaxation Time Approximation

$$\partial_{ au}f + ec{\mathsf{v}}_{\perp}f - rac{\mathsf{p}_{\mathsf{z}}}{ au}\partial_{\mathsf{p}_{\mathsf{z}}}f = -rac{\mathsf{v}_{\mu}\mathsf{u}^{\mu}}{ au_{\mathsf{rel}}}(f - f_{\mathsf{eq}})$$

Solve the equation for the p-integrated moment...

$$\mathcal{F}(au,ec{x}_{\perp};\Omega) \equiv \int rac{4\pi dp \, p^3}{(2\pi)^3} f(au,x_{\perp};p_{\perp},p_z)$$

...after writing it in a dimensionless fashion:

$$\partial_{ au}\mathcal{F}+ec{\mathsf{v}}_{\perp}\cdot\partial_{ec{\mathsf{x}}_{\perp}}\mathcal{F}-rac{1}{ au}\mathsf{v}_{z}(1-\mathsf{v}_{z}^{2})\partial_{\mathsf{v}_{z}}\mathcal{F}+rac{4\mathsf{v}_{z}^{2}}{ au}\mathcal{F}=-\mathbf{\hat{\gamma}}\left[arepsilon_{\mathcal{F}}^{1/4}(-\mathsf{v}\cdot u)\mathcal{F}-rac{arepsilon_{\mathcal{F}}^{5/4}}{(-\mathsf{v}\cdot u)^{3}}
ight]$$

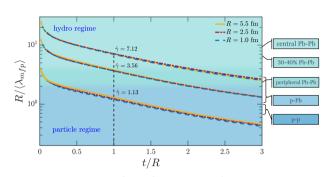
The only free parameter is the opacity $\hat{\gamma}=\frac{1}{5\eta/s}\left(\frac{R}{\pi a}\frac{dE_{\perp}^0}{d\eta}\right)^{1/4}$ (Kurkela et al., PLB 783, 274 (2018); Ambrus et al. PRD 105, 014031 (2022)

Opacity vs Inverse Knudsen Number R/λ_{mfp}

The Inverse Knudsen Number is the ratio between the two main physical scales:

$$\operatorname{Kn}_{R}^{-1} = \frac{R}{\lambda_{\mathrm{mfp}}}(t = R) \approx \hat{\gamma}$$

It also defines the regime of rigorous applicability of hydro



Universality classes in R/λ_{mfp}

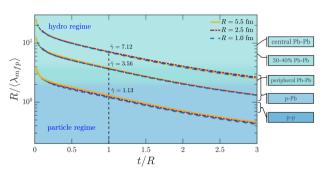
Link with 1D:
$$\hat{\gamma} = \frac{1}{5\eta/s} \left(\frac{R}{\pi a} \frac{dE_{\perp}^0}{d\eta} \right)^{1/4} = \frac{\tau_0 T_0}{5\eta/s} \left(\frac{R}{\tau_0} \right)^{3/4} = (\tau/\tau_{eq})_0 \left(\frac{R}{\tau_0} \right)^{3/4}$$

Opacity vs Inverse Knudsen Number R/λ_{mfp}

The Inverse Knudsen Number is the ratio between the two main physical scales:

$$\mathsf{Kn}_{R}^{-1} = rac{R}{\lambda_{\mathsf{mfp}}}(t=R) pprox \hat{\gamma}$$

It also defines the regime of rigorous applicability of hydro



Universality classes in $R/\lambda_{\rm mfp}$

Link with 1D:
$$\hat{\gamma} = \frac{1}{5\eta/s} \left(\frac{R}{\pi a} \frac{dE_{\perp}^0}{d\eta} \right)^{1/4} = \frac{\tau_0 T_0}{5\eta/s} \left(\frac{R}{\tau_0} \right)^{3/4} = (\tau/\tau_{eq})_0 \left(\frac{R}{\tau_0} \right)^{3/4}$$

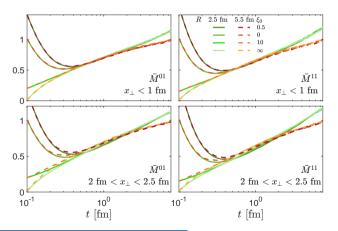
Forward attractors

3+1D, with azimuthal symmetry at $\eta_s \sim 0 \implies \overline{M}^{nm} = \overline{M}^{nm}(t, x_{\perp})$. Fix $\eta/s = 1/4\pi$. Change ξ_0 (P_L/P_T) and R.

- Same trend of 1D: attractor due to initial longitudinal expansion (identical in 1D and 3D)
- Reached at same t for different R (transverse size doesn't matter)
- Differentiate when transverse expansion starts to play a role

Forward attractors

3+1D, with azimuthal symmetry at $\eta_s \sim 0 \implies \overline{M}^{nm} = \overline{M}^{nm}(t, x_{\perp})$. Fix $\eta/s = 1/4\pi$. Change ξ_0 (P_L/P_T) and R.



- Same trend of 1D: attractor due to initial longitudinal expansion (identical in 1D and 3D)
- Reached at same t for different R (transverse size doesn't matter)
- Differentiate when transverse expansion starts to play a role

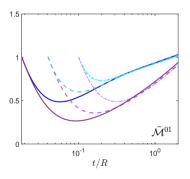
Pull-back attractors

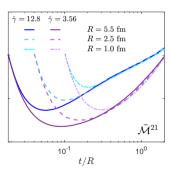
We do not have a unique time-scale any more. How do we rescale time? Do we expect pull-back attractors at all?

- If plotted wrt t/R, a pull-back attractor emerges for each universality class, i.e. each value of opacity $\hat{\gamma}$.
- One can 'rescale' one system evolution to another within the same universality class

Pull-back attractors

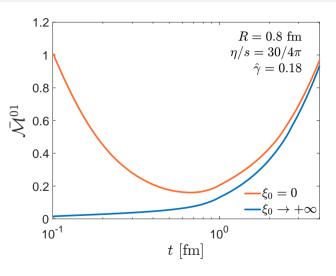
We do not have a unique time-scale any more. How do we rescale time? Do we expect pull-back attractors at all?





- If plotted wrt t/R, a pull-back attractor emerges for each universality class, i.e. each value of opacity $\hat{\gamma}$.
- One can 'rescale' one system evolution to another within the same universality class

Loss of attractors for extremely small $\hat{\gamma}$



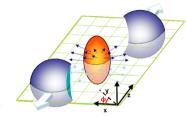
- Attractor do not reached even for t = 4 fm $\approx 5R$.
- This case is strongly unphysical! Low estimates for $\hat{\gamma}_{pp} \gtrsim 0.4$

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

$$z = x + iy \rightarrow z' = z - \alpha \bar{z}^{n-1}$$

$$\epsilon_n = \frac{\sqrt{\langle x_{\perp}^n \cos(n\phi) \rangle^2 + \langle x_{\perp}^n \sin(n\phi) \rangle^2}}{\langle x_{\perp}^n \rangle} \stackrel{\alpha \ll 1}{\simeq} n\alpha \frac{\langle x_{\perp}^{2(n-1)} \rangle}{\langle x_{\perp}^n \rangle}.$$



(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

Viscosity converts space anisotropies in momentum space. Expand distribution function as:

$$\frac{dN}{d\phi \, p_{\perp} \, dp_{\perp}} \propto 1 + 2 \sum_{n=1}^{\infty} \mathbf{v_n}(p_{\perp}) \cos[n(\phi_p - \Psi_n(p_{\perp}))].$$

Anisotropic flows $v_n = \langle \cos(n\phi) \rangle$

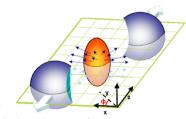
How efficiently does this conversion happen? How does it depend on η/s , $\hat{\gamma}$ and $R/\lambda_{\rm mfp}$?

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

$$z = x + iy \rightarrow z' = z - \alpha \bar{z}^{n-1}$$

$$\epsilon_n = \frac{\sqrt{\langle x_{\perp}^n \cos(n\phi) \rangle^2 + \langle x_{\perp}^n \sin(n\phi) \rangle^2}}{\langle x_{\perp}^n \rangle} \stackrel{\alpha \ll 1}{\simeq} n\alpha \frac{\langle x_{\perp}^{2(n-1)} \rangle}{\langle x_{\perp}^n \rangle}.$$



(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

Viscosity converts space anisotropies in momentum space. Expand distribution function as:

$$rac{dN}{d\phi \, p_\perp \, dp_\perp} \propto 1 + 2 \sum_{n=1}^{\infty} \mathsf{v_n}(p_\perp) \cos[n(\phi_p - \Psi_n(p_\perp))].$$

Anisotropic flows $v_n = \langle \cos(n\phi) \rangle$

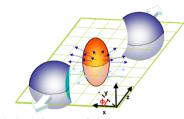
How efficiently does this conversion happen? How does it depend on η/s , $\hat{\gamma}$ and $R/\lambda_{\rm mfp}$?

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

$$z = x + iy \rightarrow z' = z - \alpha \bar{z}^{n-1}$$

$$\epsilon_n = \frac{\sqrt{\langle x_{\perp}^n \cos(n\phi) \rangle^2 + \langle x_{\perp}^n \sin(n\phi) \rangle^2}}{\langle x_{\perp}^n \rangle} \stackrel{\alpha \ll 1}{\simeq} n\alpha \frac{\langle x_{\perp}^{2(n-1)} \rangle}{\langle x_{\perp}^n \rangle}.$$



(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

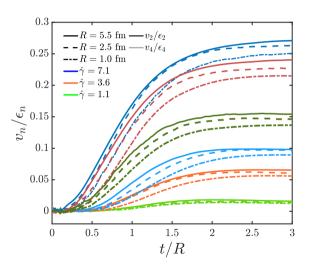
Viscosity converts space anisotropies in momentum space. Expand distribution function as:

$$rac{dN}{d\phi \, p_\perp \, dp_\perp} \propto 1 + 2 \sum_{n=1}^{N} {\sf v_n}(p_\perp) \cos[n(\phi_p - \Psi_n(p_\perp))].$$

Anisotropic flows $v_n = \langle \cos(n\phi) \rangle$

How efficiently does this conversion happen? How does it depend on η/s , $\hat{\gamma}$ and $R/\lambda_{\rm mfp}$?

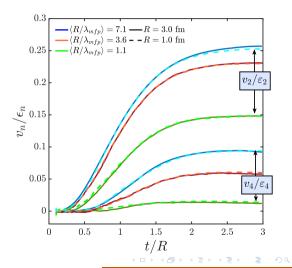
Response functions v_n/ϵ_n : Knudsen number vs opacity



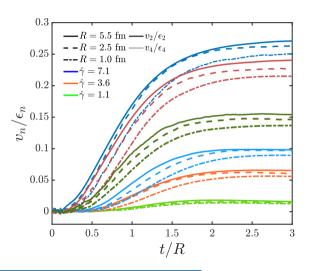
- No dependence on ϵ_n
- Clusters in $\hat{\gamma}$ within 10%. Spreading decreases with increasing $\hat{\gamma}$
- For fixed $\hat{\gamma}$, monotonic ordering in R

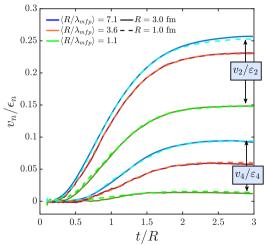
Response functions v_n/ϵ_n : Knudsen number vs opacity

Universality w.r.t Knudsen number!

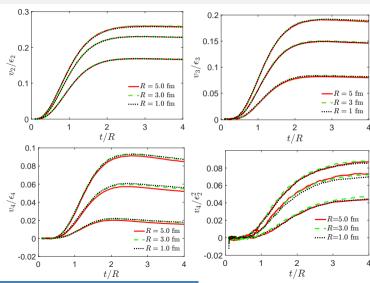


Response functions v_n/ϵ_n : Knudsen number vs opacity





Response functions



- Very good scaling from small (R=1 fm) to large systems (R=5 fm) with $\eta/s=0.5/4\pi-10/4\pi$
- Scaling is slightly worse for higher order harmonics
- Universality also for quadratic response functions $v_4 \approx (\varepsilon_2)^2$

(in preparation)

- Initial ($au_0 \sim 0.1 0.4$ fm) v_n from CGC model prediction
- Mimic initial $v_2=0.025$ by $\psi_0=-0.1\implies f\propto \exp\left(-\sqrt{p_{_X}^2(1+\psi_0)+p_{_Y}^2+p_{_Z}^2}/T\right)$
- How does this initial v_2 impact on the observed $v_2(t=2R)$?

- \sim Universality in $\hat{\gamma}$ (same colour curves)
- For AA systems really smal impact: collisions cancel initial correlation
- For pp strong impact $\gtrsim 15\%$

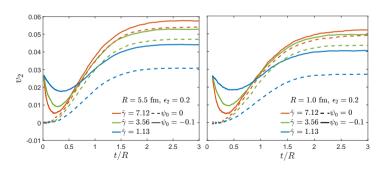
- Initial ($au_0 \sim 0.1 0.4$ fm) v_n from CGC model prediction
- Mimic initial $v_2=0.025$ by $\psi_0=-0.1 \implies f \propto \exp\left(-\sqrt{p_x^2(1+\psi_0)+p_y^2+p_z^2}/T\right)$
- How does this initial v_2 impact on the observed $v_2(t=2R)$?

- \sim Universality in $\hat{\gamma}$ (same colour curves)
- For AA systems really small impact: collisions cancel initial correlation
- ullet For pp strong impact $\gtrsim 15\%$

- Initial ($au_0 \sim 0.1 0.4$ fm) v_n from CGC model prediction
- Mimic initial $v_2=0.025$ by $\psi_0=-0.1\implies f\propto \exp\left(-\sqrt{p_{\scriptscriptstyle X}^2(1+\psi_0)+p_{\scriptscriptstyle Y}^2+p_{\scriptscriptstyle Z}^2}/T\right)$
- How does this initial v_2 impact on the observed $v_2(t=2R)$?

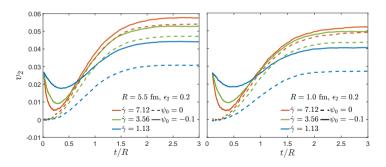
- \sim Universality in $\hat{\gamma}$ (same colour curves)
- For AA systems really small impact: collisions cancel initial correlation
- For pp strong impact $\gtrsim 15\%$

- Initial ($au_0 \sim 0.1 0.4$ fm) v_n from CGC model prediction
- Mimic initial $v_2=0.025$ by $\psi_0=-0.1\implies f\propto \exp\left(-\sqrt{p_{_X}^2(1+\psi_0)+p_{_Y}^2+p_{_Z}^2}/T\right)$
- How does this initial v_2 impact on the observed $v_2(t=2R)$?



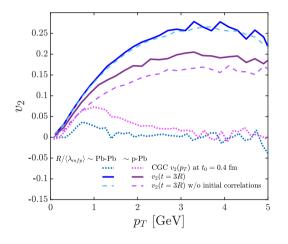
- \sim Universality in $\hat{\gamma}$ (same colour curves)
 - For AA systems really small impact: collisions cancel initial correlation
- For pp strong impact $\gtrsim 15\%$

- Initial ($au_0 \sim 0.1 0.4$ fm) v_n from CGC model prediction
- Mimic initial $v_2=0.025$ by $\psi_0=-0.1\implies f\propto \exp\left(-\sqrt{p_{_X}^2(1+\psi_0)+p_{_Y}^2+p_{_Z}^2}/T\right)$
- How does this initial v_2 impact on the observed $v_2(t=2R)$?



- ullet ~ Universality in $\hat{\gamma}$ (same colour curves)
- For AA systems really small impact: collisions cancel initial correlation
- ullet For pp strong impact $\gtrsim 15\%$

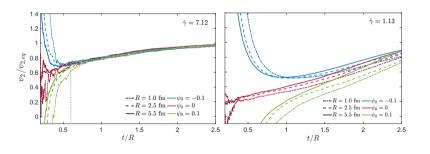
Memory of initial v_2 in pA vs AA



- Minijets + m = 0.3 GeV (\approx QPM) + $\eta/s(T)$
- Initial v₂(p_T) from CGC (Schenke et al., PLB 747 (2015))
- Initial eccentricity $\epsilon_2 = 0.3$ (Sun et al., EPJC (2020))
- No memory of initial $v_2(p_T)$ in AA
- Sensitive impact of initial $v_2(p_T)$ in pA

Attractors in $v_2/v_{2,eq}$

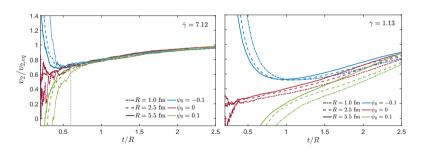
Equilibrium
$$v_n$$
: $v_n^{eq} = \frac{\int d^2 \mathbf{x}_\perp \int d^3 \mathbf{p} \cos(n\phi) \, \Gamma(\mathbf{x}_\perp) \exp(-p_\mu \cdot u^\mu(\mathbf{x}_\perp)/T(\mathbf{x}_\perp))}{\int d^2 \mathbf{x}_\perp \int d^3 \mathbf{p} \, \Gamma(\mathbf{x}_\perp) \exp(-p_\mu \cdot u^\mu(\mathbf{x}_\perp)/T(\mathbf{x}_\perp))}$



- Fix opacity $\hat{\gamma}$, change $R, \eta/s, \psi_0$

Attractors in $v_2/v_{2,eq}$

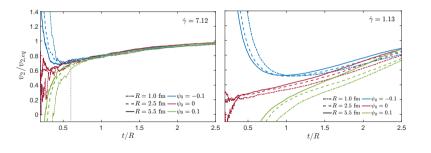
Equilibrium
$$v_n$$
: $v_n^{eq} = \frac{\int d^2 \mathbf{x}_\perp \int d^3 \mathbf{p} \cos(n\phi) \, \Gamma(\mathbf{x}_\perp) \exp(-p_\mu \cdot u^\mu(\mathbf{x}_\perp)/T(\mathbf{x}_\perp))}{\int d^2 \mathbf{x}_\perp \int d^3 \mathbf{p} \, \Gamma(\mathbf{x}_\perp) \exp(-p_\mu \cdot u^\mu(\mathbf{x}_\perp)/T(\mathbf{x}_\perp))}$



- Fix opacity $\hat{\gamma}$, change $R, \eta/s, \psi_0$
- Clear attractor behaviour for high opacity: curves converge at $t \approx 0.7R$

Attractors in $v_2/v_{2,eq}$

Equilibrium
$$v_n$$
: $v_n^{eq} = \frac{\int d^2 \mathbf{x}_\perp \int d^3 \mathbf{p} \cos(n\phi) \, \Gamma(\mathbf{x}_\perp) \exp(-p_\mu \cdot u^\mu(\mathbf{x}_\perp)/T(\mathbf{x}_\perp))}{\int d^2 \mathbf{x}_\perp \int d^3 \mathbf{p} \, \Gamma(\mathbf{x}_\perp) \exp(-p_\mu \cdot u^\mu(\mathbf{x}_\perp)/T(\mathbf{x}_\perp))}$



- Fix opacity $\hat{\gamma}$, change $R, \eta/s, \psi_0$
- Clear attractor behaviour for high opacity: curves converge at $t \approx 0.7R$
- Partially broken attractor for small opacity. At t=2R. band of width $\sim 15\%$ and $v_2/v_2^{eq} \approx 0.7$

Summary

1D systems

- Attractors in all the examined cases in the distribution function and its moments
- One relevant time scale (au_{eq}) driving the evolution

3D systems

- \checkmark Forward and pull-back attractors (\sim 1D), difference w.t.r. 1D for t>R
- ✓ Inverse Knudsen number R/λ_{mfp} very good universal parameter
- \checkmark Memory of initial momentum correlations in \sim pA systems, not in \sim AA

Outlook

- Non-conformal equation of state implemented
- Initial fluctuations for event-by-event simulation implemented
- \bullet Pre-hydrodynamic transport + transport/hydro without discontinuity in bulk pressure Π

Thank you for your attention.

LRF and matching conditions

Define the Landau Local Rest Frame (LRF) via the fluid four-velocity:

$$T^{\mu\nu}u_{\nu}=\varepsilon u^{\mu}, \ n=n^{\mu}u_{\mu}$$

 ε and n are the energy and particles density in the LRF.

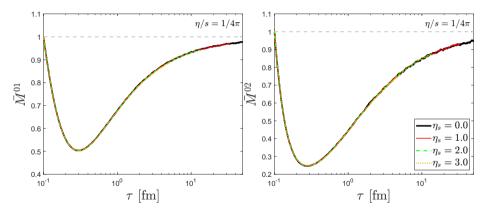
Fluid is not in equilibrium \implies define locally effective T and Γ via Landau matching conditions:

$$T = \frac{\varepsilon}{3 n}, \qquad \Gamma = \frac{n}{d T^3 / \pi^2},$$

d is the # of dofs, fixed d = 1.

Testing boost-invariance

Compute normalized moments at different η_s 's within an interval $\Delta \eta_s = 0.04$.



No dependence on $\eta!$ We look for them at midrapidity: $\eta \in [-0.02, 0.02]$

Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)

$$p^{\mu}\partial_{\mu}f_{p}=-rac{p\cdot u}{ au_{eq}}(f_{eq}-f_{p}).$$

Exactly solvable, by fixing number and energy conservation.

Two coupled integral equations for $\Gamma_{eff} \equiv \Gamma$ and $T_{eff} \equiv T$:

$$\Gamma(\tau)T^{4}(\tau) = D(\tau,\tau_{0})\Gamma_{0}T_{0}^{4}\frac{\mathcal{H}(\alpha_{0}\tau_{0}/\tau)}{\mathcal{H}(\alpha_{0})} + \int_{\tau_{0}}^{\tau}\frac{d\tau'}{2\tau_{eq}(\tau')}D(\tau,\tau')\Gamma(\tau')T^{4}(\tau')\mathcal{H}\left(\frac{\tau'}{\tau}\right),$$

$$\Gamma(au)T^3(au) = rac{1}{ au} \left[D(au, au_0) \Gamma_0 T_0^3 au_0 + \int_{ au_0}^ au rac{d au'}{ au_{eq}(au')} D(au, au') \Gamma(au') T^3(au') au'
ight].$$

Here $\alpha = (1 + \xi)^{-1/2}$. System solvable by iteration.

vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation, starting from kinetic theory (G. S. Denicol *et al.*, *PRL*105, 162501 (2010)) :

$$\partial_{ au} arepsilon = -rac{1}{ au} (arepsilon + P - \pi), \ \partial_{ au} \pi = -rac{\pi}{ au_{\pi}} + rac{4}{3} rac{\eta}{ au_{\pi} au} - eta_{\pi} rac{\pi}{ au},$$

where $\tau_{\pi} = 5(\eta/s)/T$ and $\beta_{\pi} = 124/63$. Solved with a Runge-Kutta-4 algorithm.

aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Almaalol, Alqahtani, Strickland, PRC 99, 2019).

System of three coupled ODEs:

$$\begin{split} \partial_{\tau}\log\gamma + 3\partial_{\tau}\log\Lambda - \frac{1}{2}\frac{\partial_{\tau}\xi}{1+\xi} + \frac{1}{\tau} &= 0;\\ \partial_{\tau}\log\gamma + 4\partial_{\tau}\log\Lambda + \frac{\mathcal{R}'(\xi)}{\mathcal{R}(\xi)}\partial_{\tau}\xi &= \frac{1}{\tau}\left[\frac{1}{\xi(1+\xi)\mathcal{R}(\xi)} - \frac{1}{\xi} - 1\right];\\ \partial_{\tau}\xi - \frac{2(1+\xi)}{\tau} + \frac{\xi(1+\xi)^2\mathcal{R}^2(\xi)}{\tau_{eq}} &= 0. \end{split}$$

Solved with a Runge-Kutta-4 algorithm.

Computation of moments in other models

RTA:

$$M^{nm}(\tau) = \frac{(n+2m+1)!}{(2\pi)^2} \Big[D(\tau,\tau_0) \alpha_0^{n+2m-2} T_0^{n+2m+2} \Gamma_0 \frac{\mathcal{H}^{nm}(\alpha\tau_0/\tau)}{[\mathcal{H}^{20}(\alpha_0)/2]^{n+2m-1}} + \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau_{eq}(\tau')} D(\tau',\tau') \Gamma(\tau') T^{n+2m+2}(\tau') \mathcal{H}^{nm}\left(\frac{\tau'}{\tau}\right) \Big];$$

DNMR:

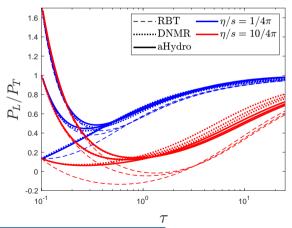
$$\overline{M}_{\mathsf{DNMR}}^{nm} = 1 - \frac{3m(n+2m+2)(n+2m+3)}{4(2m+3)} \frac{\pi}{\varepsilon};$$

aHydro:

$$\overline{M}_{\mathsf{aHydro}}^{nm}(\tau) = (2m+1)(2\alpha)^{n+2m-2} \frac{\mathcal{H}^{nm}(\alpha)}{[\mathcal{H}^{20}(\alpha)]^{n+2m-1}};$$

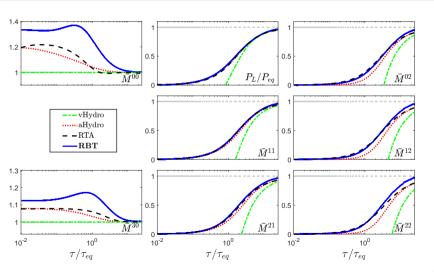
Pressure anisotropy in different frameworks

For $\eta/s = 1/4\pi$ and $\eta/s = 10/4\pi$, compute P_L/P_T from three different initial anisotropies: $\xi_0 = -0.5, 0, 10.$



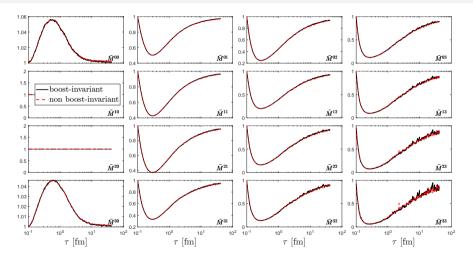
- RTA (not showed) really similar to aHvdro
- ullet aHydro attractor reached \sim time than RBT
- vHydro attractor reached at later time, especially for larger η/s

Attractors in different models



- \overline{M}^{nm} , m > 0: very good agreement
- Higher order moments
 → stronger departure
 between models
- RBT thermalizes earlier
- No agreement for \overline{M}^{n0}

Midrapidity

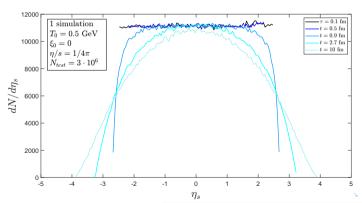


At midrapidity no difference w.r.t. the boost invariant case.

Finite distribution in η

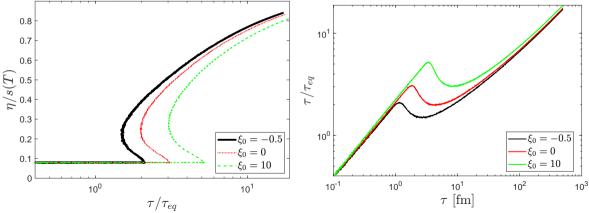
Breaking boost-invariance:
$$\frac{dN}{d\eta_s}(\eta_s; \tau_0) = \begin{cases} \text{const.} & |\eta_s| < 2.5 \\ 0 & \text{elsewhere} \end{cases}$$

- Tails of the distribution function at $|\eta_s|>1$
- Discontinuity in initial distribution \rightarrow non-analyticity points in moments' evolution

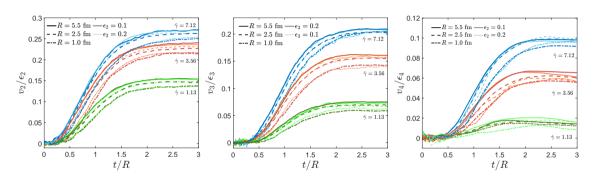


Non-monotonic au/ au_{eq} for Case 1

Loops when τ/τ_{eq} is no more a monotonic function: $\tau_{eq} \propto \eta/s(T)/T$ grows faster than τ .



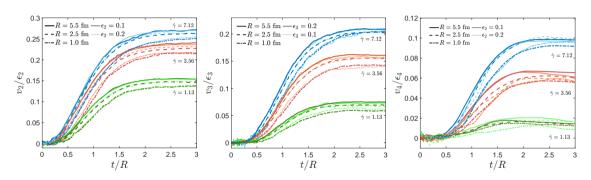
Response functions v_n/ϵ_n at fixed opacity $\hat{\gamma}$



• No dependence on ϵ_n

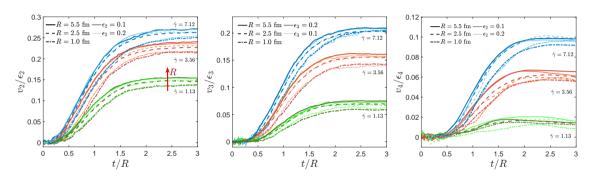
- Clusters in $\hat{\gamma}$ within 10%. Spreading decreases with increasing $\hat{\gamma}$
- For fixed $\hat{\gamma}$, monotonic ordering in R

Response functions v_n/ϵ_n at fixed opacity $\hat{\gamma}$



- No dependence on ϵ_n
- Clusters in $\hat{\gamma}$ within 10%. Spreading decreases with increasing $\hat{\gamma}$
- For fixed $\hat{\gamma}$, monotonic ordering in R

Response functions v_n/ϵ_n at fixed opacity $\hat{\gamma}$



- No dependence on ϵ_n
- Clusters in $\hat{\gamma}$ within 10%. Spreading decreases with increasing $\hat{\gamma}$
- For fixed $\hat{\gamma}$, monotonic ordering in R

