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uRHICs, attractors & RBT

...but not only

Collectivity signatures observed also in small systems (pp and pA)

(You Zhou, Collectivity in high energy proton proton collisions, SQM2024)

Good description by hydrodynamics!
V. Nugara Attractors & Universality in Relativistic Boltzmann 3 / 30



uRHICs, attractors & RBT

Attractors

What is an attractor?
Subset of the phase space to which all trajectories converge

Why do we look for attractors?
Uncertainties in initial conditions affect final
observables? Memory of initial conditions?
Attractors and hydrodynamisation (small systems)
Universality as a hint for collective phenomena

Where do we look for attractors?
Full distribution function f (x , p)

Moments of f (x , p) and anisotropic flows vn

Jankowski, Spalinski, Hydrodynamic attractors in

ultrarelativistic nuclear collisions, 2023
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Relativistic Boltzmann Transport Approach

Relativistic Boltzmann Transport (RBT) Code

Solve Boltzmann Equation: pµ∂µf (x , p) = C2↔2 [f (x , p)]p
Large number of Test Particles sample the distribution function

Preserving causality by construction: Particles velocity ≤ c , ∆t > ∆x
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Relativistic Boltzmann Transport Approach

Fixing η/s

2 ↔ 2 collisions ⇒ Particle conservation ⇒ Fugacity ̸= 1.
Test particles can collide with probability P22 ∝ σ22(x)
Notice: They are not physical collisions, but a numerical
method to implement C22 [f (x , p)]p
Fix σ22 (total cross section) locally via the Champan-Enskog
formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012) ):

η = f (m/T )
T

σ22

m=0
= 1.2

T

σ22
⇒ σ22(x) = 1.2

T (x)

η/s s(x)

η/s → 0: ideal hydro; η/s → ∞: free streaming
(η/s)QGP ∼ 1/4π: most ideal fluid!

Green-Kubo vs Chapman-Enskog
estimations of η.
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1D conformal systems

Code setup for 1D boost-invariant systems (Bjorken flow)

Conformal system (m = 0)
One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.
Boost-invariance. No dependence on ηs dN/dηs = const. in [−ηsmax, ηsmax]

Normalised moments: M
nm

(x) =

∫
dP (p · u)n(p · z)2m f (x , p)∫
dP (p · u)n(p · z)2m feq(x , p)

(e.g. M
01

= PL/Peq)

Romatschke-Strickland Distribution Function

f0(p; γ0,Λ0, ξ0) = γ0 exp

(
− 1
Λ0

√
p2
⊥ + p2

w (1 + ξ0)

)
where p2

⊥ = p2
x + p2

y and pw = (p · z)
ξ0 fixes initial PL/PT , γ0 and Λ0 fix initial ε and n
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1D conformal systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

At τ = τ0, three
different distributions in
momentum space:
oblate (ξ0 = 10),
spherical (ξ0 = 0) and
prolate (ξ0 = −0.5).
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1D conformal systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

Already at τ ∼ 1 fm,
strong initial
longitudinal expansion
brings the system away
from equilibrium
Distribution functions
have similar (but not
identical) shape.
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1D conformal systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

At τ ∼ 5 fm, clear
universal behaviour also
for the distribution
functions.
Two components:
strongly peaked pw
distribution and a more
isotropic one
(Strickland, JHEP 12, 128)

V. Nugara Attractors & Universality in Relativistic Boltzmann 8 / 30



1D conformal systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

For large τ the system
is almost completely
thermalized and
isotropized.
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1D conformal systems

Forward Attractor vs τ

Different initial anisotropies ξ0 = −0.5, 0, 10,∞, for η/s = 1/4π and η/s = 10/4π.
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η/s = 1/4π: attractor
at τ ∼ 0.5 fm
η/s = 10/4π: attractor
at τ ∼ 1.0 fm
Not 10 times larger!
Less collisions to reach
the attractor?
Different attractors
for different η/s?
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1D conformal systems

Mean free time & Pull-back attractors

Only one relevant time-scale

Mean free time

τcoll =
1
2

(
1

Npart

∆Ncoll

∆t

)−1

Notice: τcoll ∝ λmfp.

τRBTeq ≡ 3
2
τcoll = τtr = τRTA

eq =
5η/s
T

(Denicol et al.PRD 83, 074019)
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100
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re
la

x
at

io
n

ti
m

e

=RBT
eq

=RTA
eq

2=s = 10=4:

2=s = 1=4:

Same relaxation time as RTA
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1D conformal systems

Mean free time & Pull-back attractors

Only one relevant time-scale =⇒ Solution rescaling: Pull-back attractor
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Unique attractor!
η/s = 1/4π: attractor at
τ ∼ 1.5 τeq
η/s = 10/4π: attractor at
τ ∼ 0.2 τeq
Initial free streaming expansion
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1D conformal systems

Universality in 1D

1

1.1

1.2

1.3

1.4

7M 00

0

0.5

1

7M 01 = PL=Peq
0

0.5

1

7M 02

0

0.5

1

7M 11

0

0.5

1

7M 12

10-2 100 102

===eq

0

0.5

1

7M 21

10-2 100 102

===eq

0

0.5

1

7M 22

         1       0.1       0.1
         2       0.2       0.1
        10      0.1       0.01
         5       0.05     0.01
         4       0.2       0.05
         2       0.1       0.05

attractor

          4:2 /s   =
0
[fm]  ratio

===eq
10-2 100 102

Fix (τ/τeq)0 = τ0T0/(η/s) =⇒ same
results in terms of scaled time τ/τeq
Same in RTA and hydro.

In DNMR w̄ ≡ τT

5η/s
and φ =

π

4ε
+

2
3
:

w̄φφ′ + 4φ2 + (w̄ − 34
7
)φ− 442

315
− 2

w̄

3
= 0

φ(w̄0) = φ0

(Strickland et al.PRD 97 036020 (2018))
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1D conformal systems

Comparison with different models

10-2 10-1 100 101

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

7M 00

10-2 10-1 100 101

0

0.2

0.4

0.6

0.8

1

7M 01

10-2 10-1 100 101

===eq

1

1.05

1.1

1.15

1.2

7M 30

10-2 10-1 100 101

===eq

0

0.2

0.4

0.6

0.8

1

7M 11

RBT

RTA

aHydro

DNMR (14-moment)

Who is the attractor?
Go to the limit ξ0 → ∞ (PL → 0) ,

(τ/τeq)0 = τ0T0/(η/s) → 0;
in agreement with RTA and aHydro
(M. Strickland et al.PRD 97, 036020 (2018),

P. Romatschke PRL 120, 012301 (2018))

Very good agreement with other models
for Mnm, n > 0, get slightly worse for
higher order moments
Worse agreement for M0m: sensitivity to
slowly thermalising particles with pz ∼ 0
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3D systems. Moments

Code setup for 3D systems

Conformal system (m = 0)
Relax boundary conditions in the transverse plane =⇒ Transverse expansion

Romatschke-Strickland Distribution Function

f0(x , p) = γ0 exp

−

√
p2
T + p2

w (1 + ξ0)

Λ0

 e−x2
⊥/R2

θ(2.5 − |ηs |)

γ0 and Λ0 fix initial ε and n (Landau matching conditions);

ξ0 fixes initial PL/PT

Gaussian distribution in the transverse plane

Uniform distribution in ηs : [-2.5, 2.5]
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3D systems. Moments

Comparison with hydro

Very good agreement with 3D conformal hydro (MUSIC) with η/s = 1/(4π):
Matching time at 1.0 fm via full Tµν

Conformal EOS, same η/s = 1/4π
Fugacity: Γ(t) ̸= 1 in Boltzmann ̸= Γ(t) = 1 in hydro.
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3D systems. Moments

Transverse expansion

0 < t < R

Longitudinal
expansion (∼ 1D)

t > R

Onset of transverse
expansion

t > 2R

Quasi free streaming
(⟨β⊥⟩ > 0.8)
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3D systems. Moments

Transverse expansion

New relevant time/length scale

Transverse dimension R
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3D systems. Moments

Boltzmann Equation in Relaxation Time Approximation

∂τ f + v⃗⊥f −
pz
τ
∂pz f = −vµu

µ

τrel
(f − feq)

Solve the equation for the p-integrated moment...

F(τ, x⃗⊥; Ω) ≡
∫

4πdp p3

(2π)3
f (τ, x⊥; p⊥, pz)

...after writing it in a dimensionless fashion:

∂τF + v⃗⊥ · ∂x⃗⊥F − 1
τ
vz(1 − v2

z )∂vzF +
4v2

z

τ
F = −γ̂

[
ε
1/4
F (−v · u)F −

ε
5/4
F

(−v · u)3

]

The only free parameter is the opacity γ̂ =
1

5η/s

(
R

πa

dE 0
⊥

dη

)1/4

(Kurkela et al., PLB 783, 274 (2018); Ambrus et al. PRD 105, 014031 (2022) )
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3D systems. Moments

Opacity vs Inverse Knudsen Number R/λmfp

The Inverse Knudsen Number is the ratio
between the two main physical scales:

Kn−1
R =

R

λmfp
(t = R) ≈ γ̂

It also defines the regime of rigorous
applicability of hydro

Universality classes in R/λmfp

Link with 1D: γ̂ =
1

5η/s

(
R

πa

dE 0
⊥

dη

)1/4

=
τ0T0

5η/s

(
R

τ0

)3/4

=(τ/τeq)0

(
R

τ0

)3/4

V. Nugara Attractors & Universality in Relativistic Boltzmann 19 / 30



3D systems. Moments

Opacity vs Inverse Knudsen Number R/λmfp

The Inverse Knudsen Number is the ratio
between the two main physical scales:

Kn−1
R =

R

λmfp
(t = R) ≈ γ̂

It also defines the regime of rigorous
applicability of hydro

Universality classes in R/λmfp

Link with 1D: γ̂ =
1

5η/s

(
R

πa

dE 0
⊥

dη

)1/4

=
τ0T0

5η/s

(
R

τ0

)3/4

=(τ/τeq)0

(
R

τ0

)3/4

V. Nugara Attractors & Universality in Relativistic Boltzmann 19 / 30



3D systems. Moments

Forward attractors

3+1D, with azimuthal symmetry at ηs ∼ 0 =⇒ M
nm

= M
nm

(t, x⊥).
Fix η/s = 1/4π. Change ξ0 (PL/PT ) and R .
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Same trend of 1D: attractor due
to initial longitudinal expansion
(identical in 1D and 3D)
Reached at same t for different R
(transverse size doesn’t matter)
Differentiate when transverse
expansion starts to play a role
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3D systems. Moments

Pull-back attractors

We do not have a unique time-scale any more.
How do we rescale time? Do we expect pull-back attractors at all?

10-1 100

t=R

0

0.5

1

1.5

7M01

10-1 100

t=R

7M21

R = 5:5 fm
R = 2:5 fm
R = 1:0 fm

.̂ = 12:8 .̂ = 3:56

If plotted wrt t/R , a pull-back
attractor emerges for each
universality class, i.e. each value
of opacity γ̂.
One can ‘rescale’ one system
evolution to another within the
same universality class
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3D systems. Moments

Pull-back attractors

We do not have a unique time-scale any more.
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3D systems. Moments

Loss of attractors for extremely small γ̂

10-1 100

t [fm]

0

0.2

0.4

0.6

0.8

1

1.2

7 M
0
1

90 = 0
90 ! +1

R = 0:8 fm
2=s = 30=4:

.̂ = 0:18

Attractor do not reached even for
t = 4 fm ≈ 5R .
This case is strongly unphysical!
Low estimates for γ̂pp ≳ 0.4
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3D systems. Anisotropic flows

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x , y):
z = x + iy → z ′ = z − αz̄n−1

ϵn =

√
⟨xn⊥ cos(nϕ)⟩2 + ⟨xn⊥ sin(nϕ)⟩2

⟨xn⊥⟩
α≪1≃ nα

⟨x2(n−1)
⊥ ⟩
⟨xn⊥⟩

.

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

Viscosity converts space anisotropies in momentum space. Expand distribution function as:

dN

dϕ p⊥ dp⊥
∝ 1 + 2

∑
n=1

vn(p⊥) cos[n(ϕp −Ψn(p⊥))].

Anisotropic flows vn = ⟨cos(nϕ)⟩

How efficiently does this conversion happen? How does it depend on η/s, γ̂ and R/λmfp?
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3D systems. Anisotropic flows

Response functions vn/ϵn: Knudsen number vs opacity

No dependence on ϵn
Clusters in γ̂ within 10%. Spreading
decreases with increasing γ̂
For fixed γ̂, monotonic ordering in R
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3D systems. Anisotropic flows

Response functions vn/ϵn: Knudsen number vs opacity

Universality w.r.t Knudsen number!
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3D systems. Anisotropic flows

Response functions
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t=R
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v 4
=
0 4

R = 5:0 fm
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t=R

-0.02

0
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0.04

0.06

0.08

v 4
=
02 2

R=5.0 fm
R=3.0 fm
R=1.0 fm

Very good scaling from
small (R = 1 fm) to large
systems (R = 5 fm) with
η/s = 0.5/4π − 10/4π
Scaling is slightly worse for
higher order harmonics
Universality also for
quadratic response functions
v4 ≈ (ε2)

2

(in preparation)

V. Nugara Attractors & Universality in Relativistic Boltzmann 25 / 30



3D systems. Anisotropic flows

Dissipation of initial v2

Initial (τ0 ∼ 0.1 − 0.4 fm) vn from CGC model prediction

Mimic initial v2 = 0.025 by ψ0 = −0.1 =⇒ f ∝ exp
(
−
√
p2
x(1 + ψ0) + p2

y + p2
z/T

)
How does this initial v2 impact on the observed v2(t = 2R)?

0 0.5 1 1.5 2 2.5 3
t=R

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

v 2

.̂ = 7:12
.̂ = 3:56
.̂ = 1:13

A0 = 0
A0 = !0:1

R = 5:5 fm, 02 = 0:2

0 0.5 1 1.5 2 2.5 3
t=R

.̂ = 7:12
.̂ = 3:56
.̂ = 1:13

A0 = 0
A0 = !0:1

R = 1:0 fm, 02 = 0:2

∼ Universality in γ̂ (same
colour curves)
For AA systems really small
impact: collisions cancel
initial correlation
For pp strong impact ≳ 15%
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3D systems. Anisotropic flows

Memory of initial v2 in pA vs AA

Minijets + m = 0.3 GeV (≈ QPM) + η/s(T )

Initial v2(pT ) from CGC
(Schenke et al., PLB 747 (2015))

Initial eccentricity ϵ2 = 0.3
(Sun et al., EPJC (2020))

No memory of initial v2(pT ) in AA

Sensitive impact of initial v2(pT ) in pA
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3D systems. Anisotropic flows

Attractors in v2/v2,eq

Equilibrium vn: v eq
n =

∫
d2x⊥

∫
d3p cos(nϕ) Γ(x⊥) exp(−pµ · uµ(x⊥)/T (x⊥))∫

d2x⊥
∫

d3p Γ(x⊥) exp(−pµ · uµ(x⊥)/T (x⊥))
.

0.5 1 1.5 2 2.5
t=R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v 2
=
v 2

;e
q

R = 1:0 fm
R = 2:5 fm
R = 5:5 fm

A0 = !0:1
A0 = 0
A0 = 0:1

.̂ = 7:12

0.5 1 1.5 2 2.5
t=R

R = 1:0 fm
R = 2:5 fm
R = 5:5 fm

A0 = !0:1
A0 = 0
A0 = 0:1

.̂ = 1:13

Fix opacity γ̂, change
R, η/s, ψ0

Clear attractor behaviour
for high opacity: curves
converge at t ≈ 0.7R

Partially broken attractor
for small opacity. At
t = 2R, band of width
∼ 15% and v2/v

eq
2 ≈ 0.7
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Summary and outlook

Summary
1D systems

Attractors in all the examined cases in the distribution function and its moments
One relevant time scale (τeq) driving the evolution

3D systems
✓ Forward and pull-back attractors (∼ 1D), difference w.t.r. 1D for t > R

✓ Inverse Knudsen number R/λmfp very good universal parameter
✓ Memory of initial momentum correlations in ∼ pA systems, not in ∼ AA

Outlook
Non-conformal equation of state implemented
Initial fluctuations for event-by-event simulation implemented
Pre-hydrodynamic transport + transport/hydro without discontinuity in bulk pressure Π
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Summary and outlook

Thank you for your attention.
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Backup slides

LRF and matching conditions

Define the Landau Local Rest Frame (LRF) via the fluid four-velocity:

Tµνuν = εuµ,

n = nµuµ

ε and n are the energy and particles density in the LRF.
Fluid is not in equilibrium =⇒ define locally effective T and Γ via Landau matching
conditions:

T =
ε

3 n
, Γ =

n

d T 3/π2 ,

d is the # of dofs, fixed d = 1.
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Backup slides

Testing boost-invariance

Compute normalized moments at different ηs ’s within an interval ∆ηs = 0.04.

10-1 100 101

= [fm]

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

7 M
0
1

10-1 100 101

= [fm]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

7 M
0
2

2s = 0:0
2s = 1:0
2s = 2:0
2s = 3:0

2=s = 1=4: 2=s = 1=4:

No dependence on η! We look for them at midrapidity: η ∈ [−0.02, 0.02]
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Backup slides

Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)

pµ∂µfp = −p · u
τeq

(feq − fp).

Exactly solvable, by fixing number and energy conservation.
Two coupled integral equations for Γeff ≡ Γ and Teff ≡ T :

Γ(τ)T 4(τ) = D(τ, τ0)Γ0T
4
0
H(α0τ0/τ)

H(α0)
+

∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′)Γ(τ ′)T 4(τ ′)H

(
τ ′

τ

)
,

Γ(τ)T 3(τ) =
1
τ

[
D(τ, τ0)Γ0T

3
0 τ0 +

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)Γ(τ ′)T 3(τ ′)τ ′

]
.

Here α = (1 + ξ)−1/2. System solvable by iteration.
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Backup slides

vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation,
starting from kinetic theory (G. S. Denicol et al., PRL105, 162501 (2010)) :

∂τε = −1
τ
(ε+ P − π),

∂τπ = − π

τπ
+

4
3
η

τπτ
− βπ

π

τ
,

where τπ = 5(η/s)/T and βπ = 124/63.
Solved with a Runge-Kutta-4 algorithm.
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Backup slides

aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Almaalol,

Alqahtani, Strickland, PRC 99, 2019).
System of three coupled ODEs:

∂τ log γ + 3∂τ log Λ− 1
2
∂τξ

1 + ξ
+

1
τ
= 0;

∂τ log γ + 4∂τ log Λ +
R′(ξ)

R(ξ)
∂τξ =

1
τ

[
1

ξ(1 + ξ)R(ξ)
− 1
ξ
− 1

]
;

∂τξ −
2(1 + ξ)

τ
+
ξ(1 + ξ)2R2(ξ)

τeq
= 0.

Solved with a Runge-Kutta-4 algorithm.
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Backup slides

Computation of moments in other models

RTA:

Mnm(τ) =
(n + 2m + 1)!

(2π)2
[
D(τ, τ0)α

n+2m−2
0 T n+2m+2

0 Γ0
Hnm(ατ0/τ)

[H20(α0)/2]n+2m−1+

+

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ ′, τ ′)Γ(τ ′)T n+2m+2(τ ′)Hnm

(
τ ′

τ

)]
;

DNMR:
M

nm
DNMR = 1 − 3m(n + 2m + 2)(n + 2m + 3)

4(2m + 3)
π

ε
;

aHydro:

M
nm
aHydro(τ) = (2m + 1)(2α)n+2m−2 Hnm(α)

[H20(α)]n+2m−1 ;
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Backup slides

Pressure anisotropy in different frameworks

For η/s = 1/4π and η/s = 10/4π, compute PL/PT from three different initial anisotropies:
ξ0 = −0.5, 0, 10.

10-1 100 101

=

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
L
=
P

T

RBT
DNMR
aHydro

2=s = 1=4:
2=s = 10=4:

RTA (not showed) really similar
to aHydro
aHydro attractor reached ∼ time
than RBT
vHydro attractor reached at later
time, especially for larger η/s
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Backup slides

Attractors in different models
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7M 30

M
nm, m > 0: very

good agreement
Higher order moments
→ stronger departure
between models
RBT thermalizes
earlier
No agreement for Mn0
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Backup slides

Midrapidity
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boost-invariant
non boost-invariant

At midrapidity no difference w.r.t. the boost invariant case.
V. Nugara Attractors & Universality in Relativistic Boltzmann 39 / 30



Backup slides

Finite distribution in η

Breaking boost-invariance:
dN

dηs
(ηs ; τ0) =

{
const. |ηs | < 2.5
0 elsewhere

Tails of the distribution function
at |ηs | > 1
Discontinuity in initial
distribution → non-analyticity
points in moments’ evolution
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Non-monotonic τ/τeq for Case 1

Loops when τ/τeq is no more a monotonic function: τeq ∝ η/s(T )/T grows faster than τ .
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Response functions vn/ϵn at fixed opacity γ̂
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Response functions vn/ϵn at fixed opacity γ̂
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Response functions vn/ϵn at fixed opacity γ̂
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