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J. Guenther, P. Kumar, A. Pásztor, L. Pirelli, C. Ratti, C. H. Wong

and V. Vovchenko (U. Houston)



The phase diagram of QCD

What do we know about QCD thermodynamics at finite T, µB?

From a combination of approaches (experiment, models, first principle calculations, ...), we

are pretty sure of some things, and suspect others.

� Hadron phase at low T &µ, QGP at high T ||µ

� Crossover at zero density at T ≃ 160MeV

� Heavy-ion collisions probe high T, varying

density with energy scans

� Ordinary nuclear matter at T ≃ 0 and

µB ≃ 922MeV

� Critical point? Exotic phases?
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Confinement and chiral symmetry breaking

The QCD transition is characterized by the spontaneous breaking of two approximate

symmetries

� Chiral symmetry: exact for mq → 0. Order parameter is chiral condensate〈
ψ̄ψ

〉
=
T

V

∂ logZ
∂mud

Symmetric phase
〈
ψ̄ψ

〉
= 0 at high-T, and SSB

〈
ψ̄ψ

〉
̸= 0 at low-T

� Z(3) center symmetry (responsible for confinement): exact for mq → ∞. Order

parameter is Polyakov loop

P (x⃗) =

Nτ−1∏
x4=0

U4(x⃗, x4) ∼ e−F/T

Symmetric phase P = 0 (F → ∞) at low-T and SSB P = 0 (F → 0) at high-T
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Lattice formulation of QCD

In a nutshell, lattice QCD amounts to calculating path integrals like

Z[A, ψ̄, ψ] =

∫
DAaµ(x)Dψ̄(x)Dψ(x) e−

∫
d4xLE [A,ψ̄,ψ]

by defining the theory on a discretized 3+1d lattice with N3
s ×Nτ sites. This allows us to

reduce the (otherwise infinite) dimensionality of the problem.

� The quark fields ψ̄, ψ are defined on the lattice sites, the

gauge fields Aµ are defined on the lattice links as

Uµ = exp[iaAµ]

� Now, one can calculate a finite number of integrals to

evaluate expressions of the like:

Z[U, ψ̄, ψ] =

∫
DU Dψ̄Dψ e−SG[U,ψ̄,ψ]−SF [U,ψ̄,ψ]

where SG and SF are the gauge (gluonic) and fermionic

actions 3/27



QCD transition at zero density

Lattice results show a smooth crossover
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The sign/complex action problem

Euclidean path integrals are calculated with MC methods using importance sampling and

the Boltzmann weights detM [U ] e−SG[U ]

Z(V, T, µ) =

∫
DUDψDψ̄ e−SF (U,ψ,ψ̄)−SG(U)

=

∫
DU detM(U)e−SG(U)

When a chemical potential is introduced, a problem appears:

[detM(µ)]∗ = detM(−µ∗)

in general the determinant is complex and cannot serve as a statistical weight.

However, that is not the case if :

� there is particle-antiparticle-symmetry (µ = 0):

� the chemical potential is purely imaginary (µ2 < 0)

[detM(µ)]∗ = detM(−µ∗) = detM(µ) ∈ R
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QCD transition at finite density

We resort to extrapolations, but (chiral) transition is well established up to T ≃ 300 MeV
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The critical point of QCD: universality

The critical point of QCD is in the same universality class as the 3D Ising model

Pisarski, Wilczek, PRD 29 (1984) 338

� α : specific heat at h = 0 behaves as

C ∼ |t|α;

� β : spontaneous magnetization (i.e. in the

limit h→ 0+) scales as M ∼ (−t)β ;

� γ : zero-field susceptibility

χ ≡ (∂M/∂H)H=0 ∼ |t|−γ ;

� δ : along the h axis, i.e. for T = TC , the

magnetization follows M ∼ sign(h) |h|1/δ;

� with β ≃ 0.326, α ≃ 0.11 and

2 = α+ β(1 + δ)

In QCD, the critical exponents of QCD will be the same, if there is a critical point! 7/27



Signals of critical behavior

Baryon fluctuations diverge at the critical point with increasing powers of the correlation

length → higher order net-proton fluctuations are most promising
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Stephanov, PRL 107 (2011) 052301
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Signals of critical behavior?

Recent data: not clear if and where here is non-monotonicity
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The QCD critical point

From the theory side, many different models predicting a critical point
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→ and recent estimates seem to “converge”
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Large density QCD from the lattice

I. Large lattices in the continuum limit
Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

II. Monster statistics on a 163 × 8 lattice
Yang-Lee edge singularities

Adam, PP et al., 2507.xxxxx



Large density QCD from the lattice

I. Large lattices in the continuum limit
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Critical point location from entropy contours

Recently proposed to look at contours of constant entropy, and search for where they meet

Shah et al., 2410.16206

B,c

B,c

Through Taylor expansion, predicted a critical point at T ∼ 100 MeV, µB ∼ 600 MeV
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Critical point location from entropy contours

Full quantitative analysis with same method, but:

� analytical continuation from imaginary µB

� new equation of state at µB = 0 with 2x better precision
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Our entropy contours

We generalized the approach and employed new data. Starting from baryon density at

imaginary µB , obtain the entropy entropy at imaginary µB (total 16x systematics here)

s(T, µB) = s(T, µB = 0) +

∫ µB

0

dµ′
B

∂nB(T, µ
′
B)

∂T
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Our entropy contours

Now we extrapolate Ts(µB , T0), i.e. the temperature at which the entropy has the value it has at

T0, µB = 0. We use a rational function (checked linear and parabolic too):

Ts(µ
2
B , T0) =

T0 + aµ2
B

1 + bµ2
B

If there is a critical point, Ts is non-monotonic above µB > µBC , so we look for the smallest

values of the derivative at 1σ and 2σ levels (total 24x systematics per µB value)
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The exclusion region

This gives us indication of where the derivative is compatible with 0 at the 1σ and 2σ

levels, temperature by temperature → 2σ exclusion region
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Large density QCD from the lattice

Large lattices in the continuum limit
Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

II. Monster statistics on a 163 × 8 lattice
Yang-Lee edge singularities

Adam, PP et al., 2507.xxxxx



The QCD critical point

From the theory side, many different models predicting a critical point
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Critical point and universality

In the Ising model, scaling fields are the reduced temperature t = T−Tc

Tc
and the magnetic

field h. They can be mapped onto QCD coordinates as:

t = At∆T +Bt∆µB

h = Ah∆T +Bh∆µB

with ∆T = T − Tc, ∆µB = µB − µBC .

C. Schmidt, Lattice 24
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Critical point: Lee-Yang edge singularities

� The partition function of a thermodynamic system

has in general complex zeroes called Lee- Yang zeroes

� When the critical point is approached, these zeroes

approach the real (µB) axis

� Zeroes of Z are singularities of the free energy

f ∼ logZ, and they accumulate at the so-called

Yang-Lee edge (LYE) singularities
C. Schmidt, Lattice 24

� In the vicinity of a critical point, the scaling variable z = t/hβδ is the only “coordinate”,

and the LYE are universally located at:

zc = |zc| exp
(
iπ

2βδ

)
� In QCD this translates to expected scaling forms for the real and imaginary parts:

Re∆µB = µBC + c1∆T (+c2∆T
2) and Im∆µB = c3∆T

βδ 18/27



Critical point: Lee-Yang edge singularities

So, the idea is:

� determine the complex locations of the YLE

� use the expected scaling to find where Im∆µB = 0, i.e. where the critical point is

Our setup:

� Single 163 × 8 lattice, huge statistics

(O(106) at each T (!))

� Nf = 2 + 1 flavours of physical quark masses

� Our recent 4HEX action has smaller

discretization effects (i.e., Nτ = 8 is not that

small)

� Range T = 110− 300 MeV
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Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

χBn (T ) =
∂n(p/T 4)

∂(µB/T )n
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The huge statistics is reflected in tiny errors, crazy precision
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Input: fluctuation observables
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Input: fluctuation observables
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Our strategy

Model the pressure with a functional form allowing for singularities, possibly retaining the

known symmetries (charge conjugation µB ↔ −µB and Roberge-Weiss periodicity

� For each T , we use a 2/2 Padé in cosh(µB)− 1,:

F (µB) =
a(cosh(µB)− 1)

1 + c(cosh(µB)− 1) + d(cosh(µB)− 1)2

Systematics # 1: repeat the procedure for related quanties (χB1 , χ
B
2 ), also singular!

� Universality fixes the approach to the critical point:

Im(µLY )
1/βδ = c3(T − Tc)

Systematics # 2: but other asymptotically equivalent ansätze are allowed:

Im(µLY /T )
1/βδ ∼ Im(µ2

LY )
1/βδ ∼ Im((µLY /T )

2)1/βδ

� The range where the ansätze hold is not known a priori (non universal)

Systematics # 3: vary the fit range in T 21/27



Systematics #1, different observables

Estimates for the LYE singularities from p (χ0), χ1 and χ2
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Systematics #2, different ansätze for T dependence

Different ansätze all give good fits
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Systematics #3, fit range

Since we can’t know a priori where the scaling ansatz is valid, fits with different T ranges

must be treated equally
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The dependence on the fit range is very large! 24/27



Systematics: wrap up

Putting together the 3× 4× 10 = 120 analyses:

150 100 50 0 50 100 150
Tc

0.000

0.005

0.010

0.015

0.020

de
ns

ity

PDF of stat. & syst. weights
PDF of syst. weights

When considering the systematic errors, it is extremely hard to make any predictions on

the location of the CP. 25/27



Summary

Is there a critical point in the QCD phase diagram? Can lattice say something?

YES! (it can say something)

i. Critical point exclusion range: first time, though admittedly not very stringent

yet, but method is systematically improvable

ii. Yang-Lee edge singularities offer an intriguing chance, but the numerics tell us the

predictive power is (still) small

Happy birthday, Wanda!
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The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of

the transition

Left: physical masses Right: infinite masses (pure gauge)

� For a crossover (left), the peak height is independent of the volume

� For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsányi, PP et al., PRD 105 (2022)



The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition

changes

� At the physical point ms/mud ≃ 27, the transition is a smooth crossover!

� In the heavy-quark limit (pure gauge), the transition is first order



Measures of Tc vs V

Combining the estimates of Tc from different observables and volumes we can draw some

conclusions:

� Chiral transition Tc estimates have larger

V -dependence and decrease with the volume

� Deconfinement Tc estimates have milder

V -dependence and increase with the volume

� The spread is ∼ 10 MeV for LT > 2.5

� Clear ordering Tχc < T
SQ
c appears above

LT = 3
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This suggests that studies of Tc can be performed on lattice with smaller volumes based on

deconfinement-related observables



Simulations at imaginary chemical potential

� While for real chemical potential

(µ2 > 0) detM(U) is complex, for

imaginary chemical potential (µ2 < 0)

detM(U) is real

� We perform simulations at imaginary

chemical potentials:
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We then analytically continue to µ2 > 0 by means of suitable extrapolation schemes



Simulations at imaginary chemical potential

Strangeness neutrality (or not)

Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

⟨nS⟩ = 0 ⟨nQ⟩ = 0.4 ⟨nB⟩ or µQ = µS = 0



The width of the transition at finite chemical potential

We can extrapolate our results for
〈
ψ̄ψ

〉
along contours of constant

〈
ψ̄ψ

〉
(left) or constant

µB/T (right)
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The extrapolated
〈
ψ̄ψ

〉
at finite µB is quite precise for µB < 3T


