Large density QCD: (no) critical point from lattice simulations?

Paolo Parotto, Università di Torino e INFN Torino

July 4, 2025, Torino

Happy birthday, Wanda!

with

Wuppertal-Budapest collaboration: A. Adam, S. Borsányi, Z. Fodor, J. Guenther, P. Kumar, A. Pásztor, L. Pirelli, C. Ratti, C. H. Wong and V. Vovchenko (U. Houston)

The phase diagram of QCD

What do we know about QCD thermodynamics at finite T, μ_B ?

From a combination of approaches (experiment, models, first principle calculations, ...), we are pretty sure of some things, and suspect others.

- Hadron phase at low $T \And \mu,$ QGP at high $T \mid\mid \mu$
- Crossover at zero density at $T\simeq 160\,{\rm MeV}$
- **Heavy-ion collisions** probe high T, varying density with energy scans
- Ordinary nuclear matter at $T \simeq 0$ and $\mu_B \simeq 922 \,\mathrm{MeV}$
- Critical point? Exotic phases?

Confinement and chiral symmetry breaking

The QCD transition is characterized by the spontaneous breaking of two approximate symmetries

• Chiral symmetry: exact for $m_q \rightarrow 0$. Order parameter is chiral condensate

$$\left\langle \bar{\psi}\psi \right\rangle = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial m_{ud}}$$

Symmetric phase $\langle \bar{\psi}\psi \rangle = 0$ at high-T, and SSB $\langle \bar{\psi}\psi \rangle \neq 0$ at low-T

• $\mathbb{Z}(3)$ center symmetry (responsible for confinement): exact for $m_q \to \infty$. Order parameter is **Polyakov loop**

$$P(\vec{x}) = \prod_{x_4=0}^{N_\tau - 1} U_4(\vec{x}, x_4) \sim e^{-F/T}$$

Symmetric phase $P = 0 \ (F \to \infty)$ at low-T and SSB $P = 0 \ (F \to 0)$ at high-T

Lattice formulation of QCD

In a nutshell, lattice QCD amounts to calculating path integrals like

$$\mathcal{Z}[A,\bar{\psi},\psi] = \int \mathcal{D}A^a_\mu(x) \,\mathcal{D}\bar{\psi}(x) \,\mathcal{D}\psi(x) \,e^{-\int d^4x \,\mathcal{L}_E[A,\bar{\psi},\psi]}$$

by defining the theory on a discretized 3+1d lattice with $N_s^3 \times N_{\tau}$ sites. This allows us to reduce the (otherwise infinite) dimensionality of the problem.

- The quark fields ψ
 ⁻, ψ are defined on the lattice sites, the gauge fields A_µ are defined on the lattice links as U_µ = exp[iaA_µ]
- Now, one can calculate a *finite* number of integrals to evaluate expressions of the like:

$$Z[U,\bar{\psi},\psi] = \int \mathcal{D}U \,\mathcal{D}\bar{\psi} \,\mathcal{D}\psi \,e^{-S_G[U,\bar{\psi},\psi]-S_F[U,\bar{\psi},\psi]}$$

where S_G and S_F are the gauge (gluonic) and fermionic actions

QCD transition at zero density

Lattice results show a smooth crossover

Borsányi et al., JHEP 1009:073 (2010)

The sign/complex action problem

Euclidean path integrals are calculated with MC methods using importance sampling and the Boltzmann weights det $M[U] e^{-S_G[U]}$

$$Z(V,T,\mu) = \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi} \ e^{-S_F(U,\psi,\bar{\psi}) - S_G(U)}$$
$$= \int \mathcal{D}U \ \det M(U) e^{-S_G(U)}$$

When a chemical potential is introduced, a problem appears:

$$[\det M(\mu)]^* = \det M(-\mu^*)$$

in general the determinant is complex and cannot serve as a statistical weight.

However, that is **not the case if**:

- there is particle-antiparticle-symmetry $(\mu = 0)$:
- the chemical potential is purely imaginary $(\mu^2 < 0)$

 $[\det M(\mu)]^* = \det M(-\mu^*) = \det M(\mu) \in \mathbb{R}$

QCD transition at finite density

We resort to extrapolations, but (chiral) transition is well established up to $T \simeq 300 \text{ MeV}$

and shows no hint of strenghtening

The critical point of QCD: universality

The critical point of QCD is in the same universality class as the 3D Ising model

Pisarski, Wilczek, PRD 29 (1984) 338

- α : specific heat at h = 0 behaves as $C \sim |t|^{\alpha}$;
- β : spontaneous magnetization (i.e. in the limit $h \to 0^+$) scales as $M \sim (-t)^{\beta}$;
- γ : zero-field susceptibility $\chi \equiv (\partial M / \partial H)_{H=0} \sim |t|^{-\gamma};$
- δ : along the *h* axis, i.e. for $T = T_C$, the magnetization follows $M \sim \operatorname{sign}(h) |h|^{1/\delta}$;
- with $\beta \simeq 0.326$, $\alpha \simeq 0.11$ and $2 = \alpha + \beta(1 + \delta)$

In QCD, the critical exponents of QCD will be the same, *if* there is a critical point! 7/

Signals of critical behavior

Baryon fluctuations diverge at the critical point with increasing powers of the correlation length \rightarrow higher order net-proton fluctuations are most promising

Expected non monotonic behaviour as a function of μ_B in net-baryon kurtosis.

Stephanov, PRL 107 (2011) 052301

Signals of critical behavior?

Recent data: not clear if and where here is non-monotonicity

STAR Collaboration, 2504.00817

The QCD critical point

From the theory side, many different models predicting a critical point

Vovchenko, PRC 111 (2025) 054903

 \rightarrow and recent estimates seem to "converge"

I. Large lattices in the continuum limit

Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

II. Monster statistics on a $16^3 \times 8$ lattice

Yang-Lee edge singularities

Adam, PP et al., 2507.xxxxx

I. Large lattices in the continuum limit

Exclusion region for the critical point from lattice simulations!

Borsànyi, PP et al., 2502.10267

Monster statistics on a $16^3 \times 8$ lattice

Yang-Lee edge singularities

Adam, PP et al., 2507.xxxxx

Critical point location from entropy contours

Recently proposed to look at contours of constant entropy, and search for where they meet Shah et al., 2410.16206

Through Taylor expansion, predicted a critical point at $T \sim 100$ MeV, $\mu_B \sim 600$ MeV

Critical point location from entropy contours

Full quantitative analysis with same method, but:

- analytical continuation from imaginary μ_B
- new equation of state at $\mu_B = 0$ with 2x better precision

and different goal: try to exclude the CP somewhere in the phase diagram

Our entropy contours

We generalized the approach and employed new data. Starting from baryon density at imaginary μ_B , obtain the entropy entropy at imaginary μ_B (total 16x systematics here)

$$s(T,\mu_B) = s(T,\mu_B = 0) + \int_0^{\mu_B} d\mu'_B \frac{\partial n_B(T,\mu'_B)}{\partial T}$$

The points (right) are where the entropy has the same exact value (color-by-color)

Our entropy contours

Now we extrapolate $T_s(\mu_B, T_0)$, i.e. the temperature at which the entropy has the value it has at $T_0, \mu_B = 0$. We use a rational function (checked linear and parabolic too):

$$T_s(\mu_B^2, T_0) = \frac{T_0 + a\mu_B^2}{1 + b\mu_B^2}$$

If there is a critical point, T_s is non-monotonic above $\mu_B > \mu_{BC}$, so we look for the smallest values of the derivative at 1σ and 2σ levels (total 24x systematics per μ_B value)

The exclusion region

This gives us indication of where the derivative is compatible with 0 at the 1σ and 2σ levels, temperature by temperature $\rightarrow 2\sigma$ exclusion region

Not too strict a constraint, but still the first rigorous exclusion from lattice QCD.

Large lattices in the continuum limit Exclusion region for the critical point from lattice simulations! Borsànyi, PP et al., 2502.10267

II. Monster statistics on a $16^3 \times 8$ lattice

Yang-Lee edge singularities

Adam, PP et al., 2507.xxxxx

The QCD critical point

From the theory side, many different models predicting a critical point

Vovchenko, PRC 111 (2025) 054903

 \rightarrow and recent estimates seem to "converge"

Critical point and universality

In the Ising model, scaling fields are the reduced temperature $t = \frac{T-T_c}{T_c}$ and the magnetic field h. They can be mapped onto QCD coordinates as:

$$t = A_t \Delta T + B_t \Delta \mu_B$$
$$h = A_h \Delta T + B_h \Delta \mu_B$$

with $\Delta T = T - T_c$, $\Delta \mu_B = \mu_B - \mu_{BC}$.

Critical point: Lee-Yang edge singularities

- The partition function of a thermodynamic system has in general complex zeroes called Lee- Yang zeroes
- When the critical point is approached, these zeroes approach the real (μ_B) axis
- Zeroes of Z are singularities of the free energy f ~ log Z, and they accumulate at the so-called Yang-Lee edge (LYE) singularities

• In the vicinity of a critical point, the scaling variable $z = t/h^{\beta\delta}$ is the only "coordinate", and the LYE are universally located at:

$$z_c = |z_c| \exp\left(\frac{i\pi}{2\beta\delta}\right)$$

• In QCD this translates to expected scaling forms for the real and imaginary parts:

$$\operatorname{Re}\Delta\mu_B = \mu_{BC} + c_1\Delta T \ (+c_2\Delta T^2)$$
 and $\operatorname{Im}\Delta\mu_B = c_3\Delta T^{\beta\delta}$ ^{18/27}

Critical point: Lee-Yang edge singularities

So, the idea is:

- determine the complex locations of the YLE
- use the expected scaling to find where $\text{Im}\Delta\mu_B = 0$, i.e. where the critical point is

Our setup:

- Single $16^3 \times 8$ lattice, huge statistics $(\mathcal{O}(10^6) \text{ at each T (!)})$
- $N_f = 2 + 1$ flavours of physical quark masses
- Our recent 4HEX action has smaller discretization effects (i.e., $N_{\tau} = 8$ is not that small)
- Range T = 110 300 MeV

Finally, we will pay particular attention to several sources of systematics

Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

$$\chi_n^B(T) = \left. \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} \right|_{\mu_B = 0}$$

The huge statistics is reflected in tiny errors, crazy precision

Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

$$\chi_n^B(T) = \left. \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} \right|_{\mu_B = 0}$$

The huge statistics is reflected in tiny errors, crazy precision

Input: fluctuation observables

The fluctuations are the expansion coefficients of the pressure:

$$\chi_n^B(T) = \left. \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} \right|_{\mu_B = 0}$$

The huge statistics is reflected in tiny errors, crazy precision

Our strategy

Model the pressure with a functional form allowing for singularities, possibly retaining the known symmetries (charge conjugation $\mu_B \leftrightarrow -\mu_B$ and Roberge-Weiss periodicity

• For each T, we use a 2/2 Padé in $\cosh(\mu_B) - 1$,:

$$F(\mu_B) = \frac{a(\cosh(\mu_B) - 1)}{1 + c(\cosh(\mu_B) - 1) + d(\cosh(\mu_B) - 1)^2}$$

Systematics # 1: repeat the procedure for related quanties (χ_1^B, χ_2^B) , also singular!

• Universality fixes the approach to the critical point:

$$\operatorname{Im}(\mu_{LY})^{1/\beta\delta} = c_3(T - T_c)$$

Systematics # 2: but other asymptotically equivalent ansätze are allowed:

 $\mathrm{Im}(\mu_{LY}/T)^{1/\beta\delta} \sim \mathrm{Im}(\mu_{LY}^2)^{1/\beta\delta} \sim \mathrm{Im}((\mu_{LY}/T)^2)^{1/\beta\delta}$

The range where the ansätze hold is not known a priori (non universal)
Systematics # 3: vary the fit range in T

Systematics #1, different observables

Estimates for the LYE singularities from $p(\chi_0), \chi_1$ and χ_2

NOTE: here the spreads reflect the statistical errors only

Systematics #2, different ansätze for T dependence

Different ansätze all give good fits

but rather different results!

Systematics #3, fit range

Since we can't know $a \ priori$ where the scaling ansatz is valid, fits with different T ranges must be treated equally

The dependence on the fit range is very large!

Systematics: wrap up

Putting together the $3 \times 4 \times 10 = 120$ analyses:

When considering the systematic errors, it is extremely hard to make any predictions on the location of the CP.

Is there a critical point in the QCD phase diagram? Can lattice say something? **YES!** (it can say something)

- **i.** Critical point exclusion range: first time, though admittedly not very stringent yet, but method is systematically improvable
- **ii. Yang-Lee edge singularities** offer an intriguing chance, but the numerics tell us the predictive power is (still) small

Is there a critical point in the QCD phase diagram? Can lattice say something? **YES!** (it can say something)

- **i.** Critical point exclusion range: first time, though admittedly not very stringent yet, but method is systematically improvable
- **ii. Yang-Lee edge singularities** offer an intriguing chance, but the numerics tell us the predictive power is (still) small

Happy birthday, Wanda!

Summary

Summary

THANK YOU!

BACKUP

The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of the transition

Left: physical masses

- For a crossover (left), the peak height is independent of the volume
- For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsányi, PP et al., PRD 105 (2022)

Right: infinite masses (pure gauge)

The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition changes

- At the physical point $m_s/m_{ud} \simeq 27$, the transition is a smooth crossover!
- In the heavy-quark limit (pure gauge), the transition is first order

Measures of T_c vs V

Combining the estimates of T_c from different observables and volumes we can draw some conclusions:

- Chiral transition T_c estimates have larger V-dependence and decrease with the volume
- Deconfinement T_c estimates have milder V-dependence and increase with the volume
- The spread is $\sim 10~{\rm MeV}$ for LT>2.5
- Clear ordering $T_c^{\chi} < T_c^{S_Q}$ appears above LT = 3

This suggests that studies of T_c can be performed on lattice with smaller volumes based on deconfinement-related observables

Simulations at imaginary chemical potential

- While for real chemical potential
 (μ² > 0) det M(U) is complex, for
 imaginary chemical potential (μ² < 0)
 det M(U) is real
- We perform simulations at imaginary chemical potentials:

$$\hat{\mu}_B = i \frac{j\pi}{8} \quad j = 0, 1, 2, \dots$$

We then analytically continue to $\mu^2 > 0$ by means of suitable extrapolation schemes

Simulations at imaginary chemical potential

Strangeness neutrality (or not)

Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

$$\langle n_S \rangle = 0$$
 $\langle n_Q \rangle = 0.4 \langle n_B \rangle$ or $\mu_Q = \mu_S = 0$

The width of the transition at finite chemical potential

We can extrapolate our results for $\langle \bar{\psi}\psi \rangle$ along contours of constant $\langle \bar{\psi}\psi \rangle$ (left) or constant μ_B/T (right)

The extrapolated $\langle \bar{\psi}\psi \rangle$ at finite μ_B is quite precise for $\mu_B < 3T$