Torino

... A career devoted to the richness of nuclear many-body physics **3-4 July 2025**

Celebrating Wanda Alberíco

at '75

CONSTRAINTS on the NEUTRON STAR MATTER EQUATION-OF

Wolfram Weise Technische Universität

- - Empirical constraints from heavy neutron stars and binary mergers
 - Bayesian inference results and constraints on phase transitions

- Phenomenology and Models for Dense Baryonic Matter Neutron star core matter as a (relativistic) Fermi liquid
- Low-energy nucleon structure and hadron-quark continuity

Torino

4 July 2025

ENT

Dense Matter in Neutron Stars: Speed of Sound and Equation of State

NICER is continuing to observe J0030 to further improve the precision of its radius measurements. It the same time, the team is beginning to analyse data from a second target, a slightly heavier pulsar with a white-dwarf companion. Other astronomers have used observations of this pair's orbital dance to Constraints on the Equation-of-State of determine the pulsar's mass, which means NICER researchers have an **COLD** and **DENSE BARYONIC MATTER** independent measurement that they can use to validate their findings.

NICER, which picks up X-rays using 56 gold-coated telescopes, is installed on the exterior of the International Space Station. Credit: NASA

Neutron Star Matter

Layers of a Neutron Star

Technische Universität Münch

NEWS FEATURE 04 Marc

The golden

nature

C Comparison

Comparison k have complica

2.3 -

→ Measurem

predictions?

- Masses and X¹ rays from hot spots on t surface of

1.6 (NICER Telesdeper @thss)

[Miller et al., Ast

I tomoround it to anning for nout on stars peop

berimen physics has These stellar remnants ar parameti they are finally starting to Adam Mann 2.2 2.0 [unsW] W 1.6 1.4 12 liller et al.

- its into c
- n inferer

simulation of a spinning neu

1.1

NEUTRON STARS : DATA BASE

 $M = 2.08 \pm 0.07 ~M_{\odot}$

E. Fonseca et al., Astrophys. J. Lett. 915 (2021) L12

Masses and Radii (NICER, XMM Newton)

PSR J0030+0451

$I=1.34\pm0.16\mathrm{M}_\odot$	$R = 12.71^{+1.14}_{-1.19} kr$
---------------------------------	---------------------------------

T.E. Riley et al. (NICER), Astroph. J. Lett. 887 (2019) L21

PSR [0030+0451 update

lel	Mass $[M_{\odot}]$	Radius (km)	questions remaining
PDT	$1.40\substack{+0.13 \\ -0.12}$	$11.71\substack{+0.88 \\ -0.83}$	S.Vinciguerra et al.
'-U	$1.70\substack{+0.18 \\ -0.19}$	$14.44\substack{+0.88\\-1.05}$	Astroph. J. 961 (2024) 62

PSR J0740+6620

${ m M}=2.073\pm0.069\,{ m M}_\odot~~{ m R}=12.76^{+1.49}_{-1.02}$ km

T.E. Riley et al. (NICER + XMM Newton), Astroph. J. Lett. 918 (2021) L27

T. Salmi et al. (NICER + XMM Newton), Astroph. J. 974 (2024) 294

A.J. Dittmann et al. (NICER + XMM Newton), Astroph. J. 974 (2024) 295

physics nas annveu

These stellar remnants are some of the Universe's mo they are finally starting to give up their secrets.

Adam Mann

https://www.nature.com/articles/d41586-020-00590-8

CONSTRAINTS on EQUATION of STATE P(arepsilon)

from observations of massive neutron stars

Tolman - Oppenheimer - Volkov Equations

$$\frac{dP(r)}{dr} = \frac{G\left[\varepsilon(r) + P(r)\right]\left[m(r) + 4\pi r^3 P(r)\right]}{r\left[r - 2Gm(r)\right]}$$
$$\frac{dm(r)}{dr} = 4\pi r^2 \varepsilon(r)$$
$$M = m(R) = 4\pi \int_0^R dr \, r^2 \varepsilon(r)$$

Stiff equation of state $P(\varepsilon)$ required

Simplest forms of exotic matter (kaon condensate, quark matter, ...) ruled out

Key quantity : **Speed of Sound**

$$c_s^2(arepsilon) = rac{\partial P(arepsilon)}{\partial arepsilon}$$

displays characteristic signature of phase transition or crossover

$$P(arepsilon) = \int_0^arepsilon darepsilon' \, c_s^2(arepsilon')$$

Gibbs - Duhem equation (T=0) $P + \varepsilon = \mu_B n_B = \sum_i \mu_i n_i$

SOUND VELOCITY and EQUATION of STATE

Baryon density $n_B = \partial P / \partial \mu_B$ **Baryon chemical potential** $\mu_B = \partial \varepsilon / \partial n_B$

INFERENCE of **SOUND SPEED** and **RELATED PROPERTIES of NEUTRON STARS**

EQUATION of STATE and SOUND VELOCITY - boundary conditions -

COLD QUARK MATTER in **pQCD**

NEUTRON STAR MATTER : EQUATION of STATE

Bayesian inference of sound speed and EoS

Bayesian inference of sound speed in neutron star matter

Comment : SPEED of SOUND exceeding CONFORMAL BOUND

Sound speed as function of baryon

2.0 $\overline{\mathrm{M}_{\odot}}$

L. Brandes, W. W., N. Kaiser: Phys. Rev. D 107 (2023) 014011; Phys. Rev. D 108 (2023) 094014

L. Brandes, W. W. Phys. Rev. D 111 (2025) 034005

at densities $n_B \lesssim 6 n_0$

NEUTRON STAR PROPERTIES (contd.)

L. Brandes, W. W., N. Kaiser : Phys. Rev. D 108 (2023) 094014 L. Brandes, W. W. : Phys. Rev. D 111 (2025) 034005

QCD TRACE ANOMALY and **CONFORMALITY** in **NEUTRON STARS**

Y. Fujimoto, K. Fukushima, L.D. McLerran, M. Praszalowicz : Phys. Rev. Lett. 129 (2022) 252702

- Finite T and μ_B : $\langle \Theta
 angle_{T,\mu_B} = arepsilon - 3P$

Trace anomaly measure

$$\Delta \equiv rac{\langle \Theta
angle_{T,\mu_B}}{3arepsilon} = rac{1}{3} - rac{P}{arepsilon}$$

Conformal limit : $\Delta
ightarrow 0$

Bayes factor analysis: Strong evidence for $\Delta < 0 \quad (P > arepsilon/3)$ at densities $\ n_B \gtrsim 4 \, n_0$

L. Brandes, W.W., N. Kaiser : Phys. Rev. D 108 (2023) 094014 L. Brandes, W.W. : Phys. Rev. D 111 (2025) 034005

NEUTRON STAR PROPERTIES (contd.)

BARYONIC MATTER

- **Example:** hexagonal lattice arrangement packing fraction $\phi = \frac{\pi}{3\sqrt{2}} = 0.74$
- **Repulsive short-range correlations**

and

Part Two Phenomenology, Models

Possible Dense Matter Scenarios

ΠП

CHIRAL PHASE TRANSITION in **DENSE BARYONIC MATTER** ?

- Studies in chiral nucleon-meson field theory
- Mean-field approximation (MF) : chiral first-order phase transition at baryon densities $\,n_B\sim 2-3\,n_0$
- Vacuum fluctuations (EMF) : X shift chiral transition to high density smooth crossover
- Functional Renormalisation Group (FRG) : non-perturbative loop corrections involving **pions & nucleon-hole** excitations -> further reinforcement of stabilising effects

Chiral crossover transition at $n_B > 6 n_0$ beyond core densities in neutron stars

M. Drews, W.W.: Prog. Part. Nucl. Phys. 93 (2017) 69 — L. Brandes, N. Kaiser, W.W.: Eur. Phys. J. A57 (2021) 243

CHIRAL LIMIT $(\mathrm{m}_{\pi} ightarrow 0)$ 2nd order chiral phase transition in nuclear and neutron matter

DENSE BARYONIC MATTER in **NEUTRON STARS** as a **RELAVISTIC FERMI LIQUID**

B. Friman, W.W. : Rhys. Rev. C100 (2019) 065807

Baryonic Quasiparticles :

baryons "dressed" by their strong interactions and imbedded in mesonic (multi-pion) field

L. Brandes, W.W. : Symmetry 16 (2024) 111

Neutron Star Matter : Fermi liquid / dominantly neutrons + ca. 5 % protons

Landau effective mass $m_L^*(n_B) = \sqrt{p_F^2 + M_N^2(n_B)}$ **Baryon chemical potential** $\mu_B = m_L^*(n_B) + \mathcal{U}(n_B)$ take median of $\mu_B(n_B)$

from Bayesian-inferred neutron star EoS

quasiparticle potential

Basics of (Relativistic) Fermi-Liquid Theory

G. Baym, S.A. Chin : Nucl. Phys. A262 (1976) 527

Landau effective mass

$$m_L^* = \sqrt{p_F^2 + M^2(n)}$$

Landau parameters

$$f_{pp'} = \sum_{\ell=0}^{\infty} f_{\ell} P_{\ell}(\cos \theta_{pp'}) \qquad F_{\ell} = N_0 f_{\ell}$$

T. Matsui : Nucl. Phys. A370 (1981) 365

$$\sum_{pp'} \mathcal{F}_{pp'} \delta n_p \delta n_{p'} + \dots \qquad n_p = \Theta(\mu - \varepsilon_p)$$
quasiparticle interaction
$$\mathcal{F}_{pp'} = V \frac{\delta^2 E}{\delta n_p \delta n_{p'}} = f_{pp'} + g_{pp'} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}'$$
• Density of states
at the Fermi surface
$$N_0 = \frac{m_L^* p_F}{\pi^2}$$

Quasiparticle interaction expanded in Legendre series

QUASIPARTICLE POTENTIAL and **FERMI-LIQUID PARAMETERS**

QUASIPARTICLE POTENTIAL and FERMI-LIQUID PARAMETERS

$$egin{aligned} F_0 &= rac{m_L^* \, p_F}{\pi^2} \, rac{\partial \mu_B}{\partial n_B} - 1 \ & F_1 &= -rac{3\mathcal{U}}{\mu_B} \end{aligned}$$

Upper bound for Landau parameters : limiting case of constant Fermion mass

$$M(n_B)=M_0=const.$$
 $\mu_B=m_L^*+\mathcal{U}=\sqrt{p_F^2+M_0^2}+\mathcal{U}$

LANDAU FERMI LIQUID PARAMETERS (contd.)

Comparison with atomic liquid helium-3 in its normal phase at low temperature (3 K) G. Baym, Ch. Pethick : Landau Fermi-Liquid Theory (1991)

- **Interaction** between He-3 atoms:
 - $F_0(^{3}He) \sim 10-70$

D. S. Greywall, Phys. Rev. B33 (1986) 7520

- - ... but not as extreme as one might have thought !

attractive van der Waals potential plus strongly repulsive short-range core

Landau Fermi Liquid parameters of liquid helium-3 at pressures P = (0 - 30) bar: ${ m F_1(^{3}He)}\sim 5-13$

... generally much larger in magnitude than Landau parameters of neutron star matter !

Neutron star matter at central densities is a strongly correlated Fermi system

- stiff equation of state implied by Bayesian inference results
- strong first-order transition unlikely in neutron star cores
- central baryon densities in neutron stars : $n_c \lesssim 5 \, n_0$ (68% c.l.)

Scenarios for cold dense matter in the core of neutron stars

- e.g. relativistic Fermi liquid featuring strongly repulsive many-body correlations between baryonic quasiparticles
- **hadron-quark** continuity with "core (qqq) + cloud $(q\bar{q})$ " baryons : **two-scales** scenario: soft-surface delocalisation (percolation) followed by hard-core deconfinement at densities $\,n_B \gtrsim n_c$

Happy Bírthday, Wanda wíth all best wishes for many decades to come

Supplementary Materíals

SIZES of the **NUCLEON**

$\overline{\mathbf{q}}\mathbf{q}$ $[fm^{-1}]$ $\bar{\mathbf{q}}\mathbf{q}$ 2 baryonic core $\bar{\mathbf{q}}\mathbf{q}$ $\langle {f r^2} angle_{f R}^{1/2} \simeq 0.5 \; { m fm}$ **Separation of scales** R_{cloud} $\gg 1$ R_{core} / 0

- Low-energy QCD: spontaneously broken chiral symmetry + localisation (confinement)
 - **NUCLEON** : compact valence quark core + mesonic (multi $\bar{q}q$) cloud
 - Historic example: Chiral Soliton Model of the Nucleon

$$G_i(q^2) = G_i(0) + rac{q^2}{\pi} \int_{t_0}^{\infty} dt rac{Im \, G_i(t)}{t(t-q^2-i\epsilon)}$$

$$\langle r_i^2 \rangle = \langle r_i^2 \rangle_{cloud} + \langle r_i^2 \rangle_{core} =$$

$$rac{6}{\pi} \left[\int_{t_0}^{t_c} rac{dt}{t^2} S_i(t) + \int_{t_c}^{\infty} rac{dt}{t^2} S_i(t)
ight]$$

Detailed spectral analysis of accurately determined empirical form factors

N. Kaiser, W.W. : Phys. Rev. C110 (2024) 015202

FORM FACTORS of the NUCLEON (contd.)

empirical rms radii $J^{\pi}(cloud)$ form factor

- isoscalar electric $G_E^S(q^2)$ $1^ \langle r_S^2
 angle^{1/2} = 0.78 \pm 0.01\,{
 m fm}$
- isovector electric $G_E^V(q^2)$ $1^ \langle r_V^2
 angle^{1/2} = 0.90 \pm 0.01 \, {
 m fm}$

isovector $G_A(q^2) \ 1^+$ axial

$$egin{aligned} \langle r_A^2
angle^{1/2} &= 0, \ (\langle r_A^2
angle^{1/2} &= 0, \end{aligned}$$

 $.67\pm0.01\,\mathrm{fm}$ $0.68 \pm 0.11 \, \mathrm{fm})$ R.J. Hill et al.: Rep. Prog. Phys. 81 (2018) 096301

mass

$$G_m(q^2)$$
 0+ $\langle p'|T^{\mu}_{\mu}|p
angle$

 $\langle r_m^2
angle^{1/2} = 0.53 \pm 0.04\,\mathrm{fm}$

Y.H. Lin, H.-W. Hammer, U.-G. Meißner PRL 128 (2022) 052002

 $\langle r_m^2 \rangle^{1/2} = 0.55 \pm 0.03 \,\mathrm{fm}$ D. Kharzeev : Phys. Rev. D104 (2021) 054015

S.Adhikari et al.: Phys. Rev. C108 (2023) 025201

extracted core radii

N. Kaiser, W.W. : Phys. Rev. C110 (2024) 015202

 $\langle r_{S}^{2} \rangle_{core}^{1/2} = 0.50 \pm 0.01 \, {\rm fm}$

 $\langle r_V^2 \rangle_{core} \simeq 0 \, (\pm 0.02) \, \mathrm{fm}^2 \, !!$

 $\langle r_A^2
angle_{core}^{1/2} = 0.53 \pm 0.02\,\mathrm{fm}$ (0.5 ± 0.2)

 $\langle r_m^2 \rangle_{core}^{1/2} = 0.48 \pm 0.05 \, {\rm fm}$

Hard baryonic core governed by gluon dynamics expected to remain approximately stable with increasing baryon density up until

(example: extended NJL model calculation W. Bentz, I.C. Cl

TWO-SCALES Picture of the NUCLEON : Implications for **DENSE BARYONIC MATTER**

$$\simeq \langle r_m^2
angle_{core}^{1/2} \equiv R_{core} \simeq rac{1}{2} ~{
m fm}$$

decreasing in-medium pion decay constant $f_{\pi}^{*}(n_{B})$

hard compact cores begin to touch and overlap

h
$$R_{core}(n_B=5n_0)/R_{core}(n_B=0)\simeq 1.1)$$

TWO-SCALES Scenario for **DENSE BARYONIC MATTER**

Baryon densities

 $n_B \sim n_0 = 0.16 \, {\rm fm}^{-3}$

Tails of mesonic clouds overlap : two-body boson exchange forces between nucleons

 $n_B \gtrsim 2-3\,n_0$

Soft $\bar{q}q$ clouds delocalize : **percolation** \rightarrow many-body forces

 $n_B > 5 n_0$ (beyond central densities of neutron stars) Compact nucleon cores begin to touch and overlap at distances $d \lesssim 1\,{
m fm}$ (but still have to overcome the repulsive NN hard core)

baryonic cores still separated, but subject to increasingly strong repulsive Pauli effects

Example I: ISOSCALAR ELECTRIC FORM FACTOR of the NUCLEON

$$egin{aligned} &=rac{1}{2}\left[G_E^p(q^2)+G_E^n(q^2)
ight] & \langle r_S^2
angle = \langle r_p^2
angle + \langle r_n^2
angle \ &= rac{1}{2}\left[G_E^p(q^2)+G_E^n(q^2)
ight] & rac{1}{2}\left[G_E^n(q^2)+G_E^n(q^2)
ight] & \langle r_S^2
angle = 0.775 \pm 0.011\,\mathrm{fm} & \mathrm{H.-W.\,\,Hammer,\ H.-W.\,\,Hammer,\ U.-G.\,\,\mathrm{MeiBner}\ \mathrm{PRL}\,\,128\,(2022)\,\,052002 \end{aligned}$$

$$\langle r_S^2
angle_{core}^{1/2} \simeq 0.47\,{
m fm}$$

Detailed analysis using best-fit spectral functions :

core

$${\hat r}_{e}^{2}\equiv \langle r_{B}^{2}
angle^{1/2}=0.50\pm0.01\,\mathrm{fm}$$

N. Kaiser, W.W. Phys. Rev. CII0 (2024) 015202

Example II: ISOVECTOR ELECTRIC FORM FACTOR of the NUCLEON

$$D=rac{1}{2}\left[G_E^p(q^2)-G_E^n(q^2)
ight] \qquad \langle r_V^2
angle=\langle r_p^2
angle-\langle r_p^2
angle$$
 $O09~{
m fm}$ Y.H. Lin, H.-W. Hammer, U.-G. Meißner PRL 128 (2022) 0520

... clue and test case : in the limit of exact isospin symmetry, contributions from proton and neutron valence quark cores CANCEL

> **Detailed** analysis using best-fit spectral functions :

 $\langle r_V^2 \rangle_{core} = \langle r_p^2 \rangle_{core} - \langle r_n^2 \rangle_{core} = -0.025 \text{ fm}^2 \dots \text{ almost vanishing}$

N. Kaiser, W.W. Phys. Rev. CII0 (2024) 015202

Isovector charge radius almost entirely determined by two-pion cloud

 $r_n^2 \rangle$

Example III: ISOVECTOR AXIAL FORM FACTOR of the NUCLEON

- Axial form factor $G_A^{cloud_2}(q^2) = g_A | 1 +$ core **Empirical**:
 - a) $\langle r_{A}^{2} \rangle = 0.454 \pm 0.013 \text{ fm}^{2}$ (from νd scattering and $e\,p
 ightarrow e\,n\pi^+$ dipole fits)

Detailed analysis using three-pion spectrum dominated by broad a_1 meson :

$$egin{aligned} \langle r_A^2
angle &= \langle r_A^2
angle_{core} + rac{6}{m_a^2} \left(1 + \delta_a
ight) \ & igodot &= (\langle r_A^2
angle_{core}^{1/2} = 0 \ \end{aligned}$$

[based on a); correspondingly larger uncertainty when using b)]

$$-rac{1}{6}\langle r_A^2
angle q_{clotud}^2\cdots rac{t_0}{t_0}$$

corRel. Hill, P. Kammel, W.C. Marciano, A. Sirlin Rep. Prog. Phys. 81 (2018) 096301

b) $\langle r_A^2
angle = 0.46 \pm 0.16 ~\mathrm{fm}^2$ (from μp capture and νd scattering analysis)

Axial radius significantly smaller than proton charge radius $\left(\langle r_p^2
angle=0.71\pm0.01\,{
m fm^2}
ight)$

$$\delta_{a} = -\frac{m_{a}^{3}}{\pi} \int_{9m_{\pi}^{2}}^{t_{max}} dt \frac{\Gamma_{a}(t)}{t^{2}(t-m_{a}^{2})}$$

 $0.53\pm0.02~\mathrm{fm}$

N. Kaiser, W.W. Phys. Rev. C110 (2024) 015202

пп

Example IV: MASS RADIUS of the NUCLEON

Mass ("gravitational") form factor

D. Kharzeev : Phys. Rev. D104 (2021) 054015

Trace of QCD energy-momentum tensor $G_m(q^2) = \langle P' | T^{\mu}_{\mu} | P angle = \langle P' | rac{eta(g)}{2a} G^{\mu u}_a G^a_{\mu u} + m_q(ar{u}u + ar{d}d) + m_s ar{s}s | P angle$

$$egin{aligned} G_m(0) &= M_N \simeq 0.94\,{
m GeV} \ M_N &= M_0 + \sigma_N + \sigma \ &(M_0 \gtrsim 0.9\,M_N) \ &\langle r_m^2
angle &= rac{6}{M_N} rac{dG_m(q^2)}{dq^2} igg|_q \ &\langle r_m^2
angle^{1/2} &= (0.53 \pm 0.04)\,{
m f} \end{aligned}$$

Recent GlueX update: S.Adhikari et al.; arXiv:2304.03845

ПΠ

COLD MATTER at **EXTREME DENSITIES** Hadron - Quark Continuity

QHC21 Equation-of-State

Outlook : How Bayes-inferred baryon chemical potential can help improving EoS models

Example: QHC equation of state from QHC18 to QHC21

T. Kojo, G. Baym, T. Hatsuda Astroph. J. 934 (2022) 46

QHC18

G. Baym, T. Hatsuda, T Kojo, P.D. Powell, Y. Song, T. Takatsuka Rept. Prog. Phys. 81 (2018) 056902

