Some more HFO

G. Dho

27/03/2024

- mixtures
- The goal is to estimate the improvement on the limit estimation with hydrogen content with a non flammable mixture

- Measurement at CERN with MANGO and spectrometer of the charge and light effective gain of He:CF₄:HFO

Light yield for different HFO mixtures

Taking the maximum reached LY I estimated the reduction of light in terms of reduced energy threshold

Min DM mass with He is 0.697 GeV

IFO	E_thr (keV _{ee})	Min DM mass wit
0	0.5	0.316
1	1.12	0.516
2.5	4.45	1.697
5	13.2	inf
7.5	51.3	Inf
10	127	inf

- Limit estimation based on code developed by Stefano and me in the past
- Results of the Bayesian fit for the isobutane 2% case study with limited to no directionality (we are not expecting changes in directionality with HFO)
- Quenching factor and energy threshold included
- Background of 1200 events per year with 1 year exposure and 0.4 m³
- To compare, a limit with pure He:CF₄ and 0.2% of water was estimated

SI LIMIT

10² DM Mass (GeV/c²)

10

SI LIMIT

10² DM Mass (GeV/c²)

Very low mass (below 1 GeV) All interesting range (until 8 GeV)

Two ranges were considered

3% of total limit area

- Calculated in Log₁₀ to equally weight low to large masses and low-high cross sections
- Cross section capped at 10⁻³⁰

SD LIMIT AREA GAIN

there for a paper