From last presentation...

TO DO LIST:

- Define and write a proposal to use the neutron beam at n_TOF (1-2)
- Establish contact with an AMS laboratory(1-2)
- Building shielding for the neutron detector (3)
- Calibration of the neutron detector (3)
- Are Bonner Spheres available? Which is the hypothetical time scale for the calibration? (4)
- Theoretical study on the contribution of protons and the intermediate spectrum of neutrons
- Developing simulations (5)

Production of ¹⁰Be and ²⁶Al by protons

Same ingredients as for the production rate by neutrons

- Proton flux
- Cross section
- Target nuclei

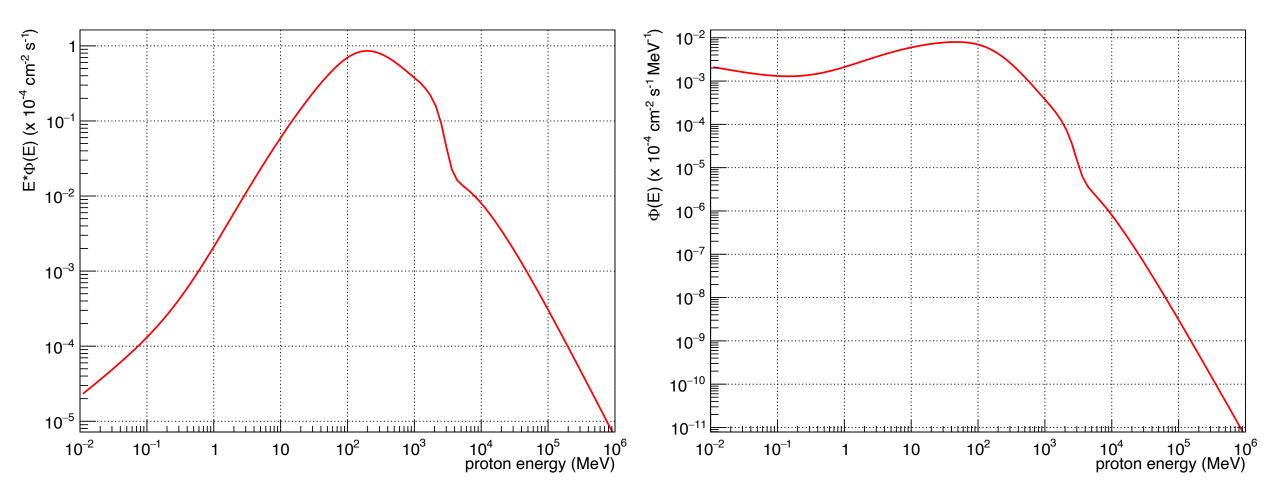
Production of ¹⁰Be and ²⁶AI: proton flux

I used the PARMA code to calculate the proton flux: <u>https://github.com/WeiMXi/PARMA/tree/master</u>

RESEARCH ARTICLE

Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/ EXPACS

Tatsuhiko Sato*


Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), Shirakata 2–4, Tokai, Ibaraki 319–1195, Japan

* sato.tatsuhiko@jaea.go.jp

With this tool, I reproduced the calculations done for the neutrons to check my correct understanding of the program...

...And I found $P_{26} \sim 21$ atoms/g/y (Same results of Per's calculations)

Production of ¹⁰Be and ²⁶AI: proton flux

Production of ¹⁰Be and ²⁶AI: reactions of interest and threshold

²⁸Si + p (E_{lab} = 100000 keV)

Reaction Products	Q-Value (keV)		Threshold (keV)	
¹⁰ Be + p + 2 ³ He + 3α	-71237.47	8	73804.16 <i>8</i>	
¹⁰ Be + d + 3 ³ He + 2α	-89590.52	8	92818.47 <i>8</i>	

²⁸Si + p (E_{lab} = 100000 keV)

Reaction Products	Q-Value (keV)	Threshold (keV)
²⁶ Al + ³ He	-16924.91 7	17534.71 7
²⁶ Al + p + d	-22418.38 7	23226.12 7
²⁶ Al + NN + 2p	-24642.95 7	25530.83 7

For ²⁶Al \Rightarrow Lowest threshold at 18 MeV For ¹⁰Be on Si \Rightarrow Lowest threshold at 74 MeV For ¹⁰Be on O \Rightarrow Lowest threshold at 37 MeV

¹⁶O + p (E_{lab} = 100000 keV)

⁸ Be + 2p + t + α	-34342.37	4	36506.97	4
¹⁰ Be + 3p + α	-34347.35	8	36512.26	9
⁹ B + p + t + α	-34528.2	9	36704.5	10
⁸ Be + t + 2 ³ He	-47201.95	4	50177.09	4
¹⁰ Be + p + 2 ³ He	-47206.93	8	50182.38	9
¹⁰ B + NN + 2 ³ He	-47432.398	15	50422.062	16
⁸ Be + p + d + t + ³ He	-52695.43	4	56016.82	4
¹⁰ Be + 2p + d + ³ He	-52700.40	8	56022.11	9
⁹ B + d + t + ³ He	-52881.3	9	56214.4	10
⁸ Be + 3p + 2t	-54156.24	4	57569.71	4
¹⁰ Be + 4p + t	-54161.21	8	57574.99	9
¹¹ C + 3NN + 3p	-54178.30	6	57593.15	6
⁸ Be + NN + 2p + t + ³ He	-54919.99	4	58381.60	4
¹⁰ Be + NN + 3p + ³ He	-54924.97	8	58386.89	9
⁸ Be + 2p + 2d + t	-58188.90	4	61856.55	4
¹⁰ Be + 3p + 2d	-58193.88	8	61861.84	9
⁹ B + p + 2d + t	-58374.7	9	62054.1	10
¹¹ N + 3NN + ³ He	-60959	5	64801	5
⁹ Be + NN + 4p + t	-60973.50	8	64816.65	8

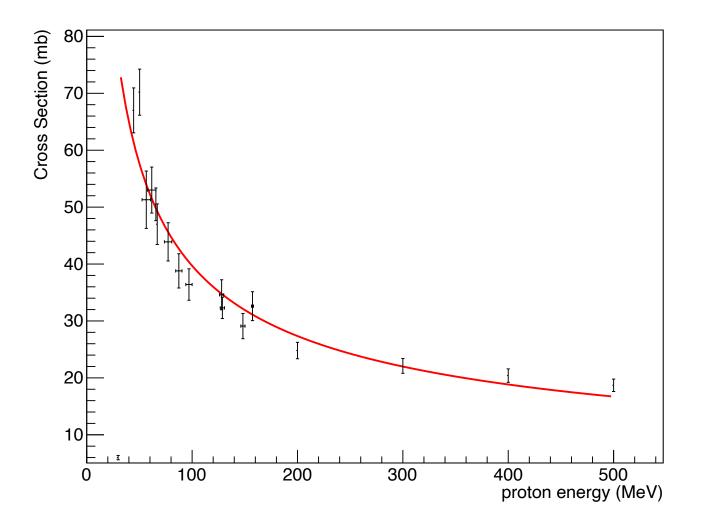
Production of ¹⁰Be and ²⁶AI: cross section

Look at EXFOR to search reaction and references: <u>10.1016/S0168-583X(96)00409-0</u>

Table 1

Proton energy ^a [MeV]	$Si(p, x)^7Be$ [mb]	$Si(p, x)^{10}Be$ [mb]	$\frac{\mathrm{Si}(\mathbf{p}, x)^{22} \mathrm{Na}}{\mathrm{[mb]}}$	Si(p, x) ²⁶ Al [mb]
500	5.7 ± 0.43	0.554 ± 0.033	17.7 ± 1.31	18.7 ± 1.09
400	4.25 ± 0.32	0.397 ± 0.029	17.5 ± 1.29	20.4 ± 1.18
300	3.9 ± 0.3	0.262 ± 0.0159	17.5 ± 1.31	22.1 ± 1.3
200	2.9 ± 0.26	0.114 ± 0.0073	15.1 ± 1.16	24.8 ± 1.44
157.3 ± 1.0	1.41 ± 0.15	0.066 ± 0.0064	16.1 ± 1.45	32.6 ± 2.54
148.2 ± 2.0	1.3 ± 0.15	0.062 ± 0.005	16.1 ± 1.46	29.1 ± 2.22
128.7 ± 2.0		1 (32.3 ± 1.88
128.0 ± 2.0	1.19 ± 0.15	0.045 ± 0.0044	16.5 ± 1.49	34.6 ± 2.64
127.5 ± 2.0		/ /	17.9 ± 0.99	
127.0 ± 2.0	1.11 ± 0.34	0.048 ± 0.0038		
97.0 ± 3.0	0.87 ± 0.16	0.023 ± 0.0026	16.8 ± 1.53	36.4 ± 2.76
87.4 ± 3.0	0.84 ± 0.14	0.019 ± 0.0019	18.1 ± 1.63	38.8 ± 3.01
77.2 ± 3.5	0.75 ± 0.13	0.011 ± 0.0013		43.9 ± 3.36
67.4	0.66 ± 0.24			
66.9	0.81 ± 0.16	0.0097 ± 0.0012	19.9 ± 1.82	47.0 ± 3.57
65.6		0.005 ± 0.0005	25.5 ± 2.4	50.5 ± 2.87
65.2	0.88 ± 0.203			
61.7 ± 4.0	0.41 ± 0.16	0.0065 ± 0.0009	20.0 ± 1.84	53.0 ± 4.04
59.0			22.4 ± 2.08	
58.7			22.0 ± 2.09	
56.5 ± 4.0	0.31 ± 0.15	0.0024 ± 0.0009	16.8 ± 1.54	51.3 ± 5.04
52.4	0.5 ± 0.105			
50.2		0.0009 ± 0.0002	11.6 ± 1.09	70.2 ± 4.05
44.5		1 1		67.0 ± 3.95
41.0			1.16 ± 0.12	
29.8				5.99 ± 0.38

Table 2


Cross sections for the production of radionuclides from O using SiO₂ targets

SiO ₂ targets			
Proton energy ^a [MeV]	$O(p, x)^7 Be$ [mb]	O(p, x) ¹⁰ Be [mb]	
500	10.2 ± 0.77		
400	10.3 ± 0.77	1.18 ± 0.068	
300	11.1 ± 0.85	0.952 ± 0.058	
200	10.3 ± 0.77	0.712 ± 0.046	
158.9 ± 1.0	6.82 ± 0.63	0.56 ± 0.048	
149.9 ± 2.0	7.11 ± 0.66	0.51 ± 0.057	
129.9 ± 2.0	7.3 ± 0.69	0.42 ± 0.044	
129.9 ± 2.0	6.27 ± 0.56		
99.9 ± 3.0	7.57 ± 0.74	0.44 ± 0.047	
89.9±3.0	7.25 ± 0.68	0.33 ± 0.038	
79.9 ± 3.5	7.66 ± 0.73	0.27 ± 0.032	
69.9 ± 3.5	7.69 ± 0.75		
67.4		0.33 ± 0.02	
64.8 ± 4	7.68 ± 0.75	0.21 ± 0.037	
59.8 ± 4	8.44 ± 0.83	0.18 ± 0.022	
49.9		0.038 ± 0.0029	
41.8		0.0079 ± 0.0008	
30.9		0.0052 ± 0.0004	

^a 200-500 MeV TRIUMF; lower energies; with energy spread indicated, HCL; no energy spread indicated, Davis.

^a 200-500 MeV TRIUMF; lower energies; with energy spread indicated, HCL; no energy spread indicated, Davis.

Production of ¹⁰Be and ²⁶AI: Si(p,x)²⁶AI cross section

- Plot of cross section in Table 1 (previous slide)
- Fit (from 30 to 500 MeV) to find a relation between cross section and energy:

 $f(x) = A \cdot x^{-B}$ A = 472.0 ± 54.3 B = 0.54 ± 0.02

Production of ¹⁰Be and ²⁶AI: ²⁶AI production rate

Now I have all ingredients:

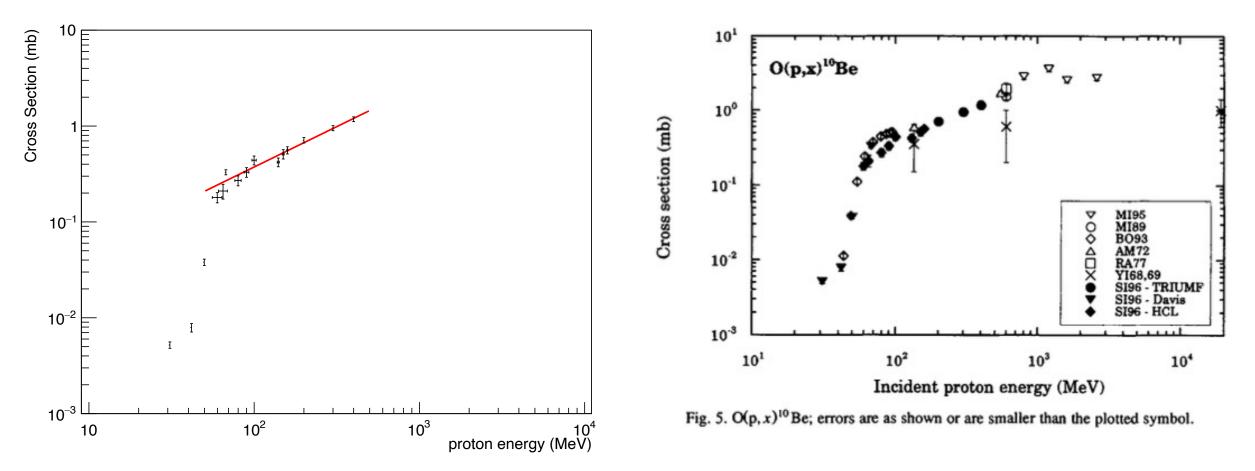
- Proton flux
- Cross section
- $N_a/(28+16*2) = Si target nuclei$


$$\Rightarrow P_{26} = 1.96 a toms/g \cdot y$$

(calculated from 30 to 500 MeV)

Value calculated by Per for spallation due to neutron:

p26 (spallation) = 21 /atoms /g /year


Production of ¹⁰Be and ²⁶AI: Si(p,x)¹⁰Be cross section

Fit (from 30 to 500 MeV) to find a relation between cross section and energy:

$$f(x) = A \cdot x^{-B}$$

A = (2.27 ± 0.31) · 10⁻⁷
B = -2.4 ± 0.03

Production of ¹⁰Be and ²⁶AI: O(p,x)¹⁰Be cross section

Fit (from 30 to 500 MeV) to find a relation between cross section and energy:

$$f(x) = A \cdot x^{-B}$$

A = (7.7 ± 1.5) · 10⁻³
B = -0.84 ± 0.04

Production of ¹⁰Be and ²⁶AI: ¹⁰Be production rate

Now I have all ingredients:

- Proton flux
- Cross section
- $N_a/(28+16*2) = Si target nuclei$
- $2*N_a/(28+16*2) = 0$ target nuclei

Cf Granger table 2 from exponential fits: $P_{10} = 4.5$ at the surface

$$\Rightarrow P_{10} = 0.08 a toms/g \cdot y$$

(calculated from 50 to 500 MeV)

Production of ¹⁰Be and ²⁶AI: Concusions

- Contribution of protons at the ¹⁰Be production rate is the 1.75%
- Contribution of protons at the ²⁶Al production rate is the 8.54%

The contribution of protons to the production rate, especially for aluminum, can be taken into account during rock dating calculations because it contributes a non-negligible percentage. Unlike neutrons, for protons, there are more experimental values available for both flux and cross-section, so it is not a priority to perform measurements to improve these values.