

Triggering the Future: Fast Muon Detection for the HL-LHC Era

Lorenzo Corazzina

University of Rome, 'La Sapienza'

The CERN accelerator complex Complexe des accélérateurs du CERN

- The Large Hadron Collider (LHC) @ CERN is the largest protonproton and ion-ion collider in the world.
- Underground 27-km ring, where particles collide every 25 ns with $\sqrt{s} = 13.6$ TeV.
- It aims at exploring the fundamental interactions, test the Standard Model (SM) and search for new physics beyond the Standard Model (BSM).
- 2012: Discovery of the Higgs boson from the ATLAS and CMS experiments → Nobel Prize to Higgs and Englert

Hi-Lumi LHC project web page

- Upgrade of the LHC collider during the next Long-Shutdown (LS3).
- Higher energy \rightarrow 14 TeV
- Higher luminosity → more collisions
 → new physics potential!

What does this mean on the detector side?

Benefits

- Instantaneous luminosity ($N_{collisions}$ per second per cm^2) up to $7.5 \cdot 10^{34} cm^{-2}s^{-1}$ @ 14 TeV (x7.5 the design LHC value)
- Integrated luminosity of $4000 f b^{-1}$
- Enormous statistics
- Precision physics in the Higgs sector
- Access to rare or new processes?

New detector challenges

- Increased average number of interactions per bunch crossing (pile-up)
- Higher background
- Stringent detector and trigger requirements
- High rate of detector data to be handled
- Enormous amount of fully-reconstructed events to be stored.

Phase-II ATLAS upgrade

New **RPC (Resistive Plate Chambers)** and **sMDT (small Monitored Drift Tubes)** muon detectors in the barrel inner region.

New **sTGCs (small Thin Gap Chambers)** in the end-cap inner region.

New **ITk (Inner Tracker)** silicon inner tracker (pixels + strip detector) with eta coverage up to 4.

New **HGTD (High Granularity Timing Detector)** in the forward region.

New TDAQ off-detector electronics:

- Level-0 FPGA-based hardware trigger.
- FELIX readout for all ATLAS detectors.
- Event Filter processor farm and hardware tracking.

ATLAS Collaboration Web page

16 independent sectors along ϕ direction for both barrel and encap regions per each half of the detector (32 sectors in total) BARREL: MDT, RPC (trigger: RPC) ENDCAP: sTGC, MM, TGC, MDT (trigger: sTGC, MM, TGC)

Innermost BI (Barrel Inner) MDT layers will be replaced by sMDTs and BI RPCs and additional sTGC in the endcaps.

Reduction of trigger fake rate, and increase in geometrical coverage and trigger performances

<u>j.nima.2016.06.065</u>

IDEAL CASE

REAL CASE

Why do we need a trigger system?

- Collisions every 25 ns → millions of collisions per second, but only a few interesting events (e.g., ~1 Higgs Boson per second!)
- Too many PB of data!

$$40 \ MHz \cdot 1.5 \frac{MB}{event} \sim 60 \frac{PB}{s}$$

Collisions @ 40 MHz

The trigger system selects interesting events reducing the amount of data passed to the storage disks

Two-level trigger \rightarrow hardware and software

Algorithms with low latency and low consumption of the hardware resources

INFN Romal and Sapienza

Muon System

barrel

sector logic

endcap

sector logic

MUCTPI

÷

CTP

<....

LOMuon

NSW trigger

processor

MDT trigger

processor

.... L0 trigger data (40 MHz)

Readout data (1 MHz)

FTK++ data (100 kHz)

Output data (10 kHz)

- EF accept signal

EFTrack data (10% data at 1 MHz)

- L0 accept signal

New Level-0 **Trigger System**

Phase-II MS Barrel Layout

- 9 RPC concentric layers in each Phi-sector.
- BM and BO have strips in both eta and phi direction.
- BI only have eta strips with front-end electronics on both sides → phi coordinate is obtained through centroid calculations.
- In the regions with the detector support structure, "feet", i.e., sector 11 and 15, no BI stations, but additional BO chambers.

ATL-UPGRADE-PROC-2022-003

ATLAS Roma I Web page

Increased geometrical acceptance from \sim 75 % to \sim 95%.

New on-detector electronics and off-detector full digital read-out @ 40 MHz.

- 32 FPGA-based off-detector boards.
- Each board (Sector Logic, SL) receives hits from the RPC detectors in a given ϕ -sector of the MS.
- Latency: ~390 ns.
- Clock: 320 MHz

(from <u>F. Morodei's slides</u>)

XCVU13P **FPGA** divided into 4 Super Logic Regions (SLRs)

- All BI-DCT data \rightarrow SLR0 \rightarrow SLR1/SLR2
- $\frac{1}{2}$ BMBO-DCT data \rightarrow SLR1 \rightarrow trigger algorithm
- $\frac{1}{2}$ BMBO-DCT data \rightarrow SLR2 \rightarrow trigger algorithm
- All DCT data \rightarrow SLR3 \rightarrow readout
- The trigger algorithm runs independently for the two

halves of the sector in SLR1 and SLR2.

Current trigger algorithm exploits a 2/3 (Barrel Medium (BM) + Barrel Outer (BO)) coincidence logic within a coincidence window around a pivot candidate (BM2).

Current trigger algorithm exploits a 2/3 (Barrel Medium (BM) + Barrel Outer (BO)) coincidence logic within a coincidence window around a pivot candidate (BM2).

The straightforward extension of this trigger logic is to use 3/4 coincidence logic without any pivot candidate (all combinations are allowed!).

RPC0

RPC3 RPC3 RPC1 RPC0

Current trigger algorithm exploits a 2/3 (Barrel Medium (BM) + Barrel Outer (BO)) coincidence logic within a coincidence window around a pivot candidate (BM2).

The straightforward extension of this trigger logic is to use 3/4 coincidence logic without any pivot candidate (all combinations are allowed!).

The final decision is to use the 3/4 without pivot + (BI & BO) logic to maximize geometrical acceptance.

BO

ΒN

BI

PatFinder

CNN, Q-CNN, GNN

ATL-COM-DAQ-2019-189

Pattern-Matching

- IDEA: look-up table of patterns.

- MC single-muons samples with uniform momentum distribution and 100% RPC efficiency.
- The OR of the two layers for doublets and the 2/3 majority for triplet BI stations is considered.
- 2 look up tables: eta and phi.

Two separate tables of patterns in the $\eta - R$ and $\phi - R$ planes with the following structure:

- Pattern $\eta = [\text{strip BI, strip BM1, strip BM2, strip BO}] + chambers + average p_T + charge.$
- Pattern $\phi = [\text{strip BI, strip BM1, strip BM2, strip BO}] + chambers + <math>\phi$ coordinate.

Each strip is identified via an integer number which is unique in each RPC station.

Matching failed

Resource	Utilization	Available	Utilization %		
LUT	81755	1728000	4.73		
FF	143156	3456000	4.14		
10	1	448	0.22		
BUFG	1	1344	0.07		

xoyo	X091	X0Y2	хоүз	X0¥4	X0Y5	X0Y6	X0 <u>Y</u> 7	XOY8	хоүэ	X0Y10	X0Y11	X0Y12	X0Y13	X0Y14	X0Y15
XIYO	X1Y1	X1Ŷ2	Х1ҮЗ	X1Y4	X1Y5	X1Y6	X1Y7	X1Y8	X1Y9	X1Y10	X1Y11	X 1Y12	X1Y13	X1Y1 4	X1Y15
X2Y0	X2			X2Y4	X2Y5	X2Y6	X2Y7	X2Y8	X2Y9	X2Y1	0X2Y11	X2Y1	2X2Y1	3X2Y1	4X2Y15
	-					-								-	
X3Y0	·			X 3Y4	хзү5	X3Y6	X3Y7	хзүе	хзү9	X3Y10	X3A1T	X3Y12	X3Y13	X3Y14	X3Y15
		x.::\:::	1Y3	X4¥4	X4Y5	X4Y6	X4Y7	X4Y8	X4Y9	X4Y10	X4Y11	X 4Y12	X 4¥13	X4¥14	X4Y15
X5 Y0	x51		Y3	X5Y4	X5 Y5	X5 Y6	X5 Y7	X5 Y8	X5 Y9	X5Y10	X5Y11	X5Y12	X5Y13	X5Y1 4	X5Y15
X6Y0	X6Y1	X6Y2	хөүз	X6Y4	X6Y5	X6Y6	X6Y7	X6¥8	X6Y9	X6Y10	X6Y11	X6Y12	X6Y13	X6Y14	X6Y15
X7Y0	X7Y <u>1</u>	X7 <u>Y2</u>	X7Y3 se	X7Y4	X7Y <u>5</u>	х7 <u>ү6</u>	X7Y7 <u>s</u>	X7Y8	X7Y <u>9</u>	<u> 77710</u>	X7Y11 g	X7Y12	X7Y1 <u>3</u>	x7Y14	X7Y15 s

Preliminary algorithm-only latency: 7 clock cycles

- HL-LHC will provide higher luminosity, providing more statistics to the experiments at CERN.
- The Phase-II ATLAS upgrade will handle the high luminosity environment from HL-LHC.
- The LOMuon Barrel Muon Trigger will provide increased geometrical acceptance and exploit SL FPGAs to run fast trigger algorithms.
- The pattern-matching algorithm is a valid candidate for the Phase-2 L0Muon Barrel Trigger.
- There are ongoing studies on simulation/performance testing and implementation in the FPGA firmware.
- Pros and cons:
 - ✓ low latency;
 - Changeable pattern lists;
 - \checkmark Pre-computed p_T and output words to the next steps in the trigger chain;
 - A huge number of patterns are to be stored in the FPGA \rightarrow it looks like they can fit.
 - X The amount of patterns makes the logic more complex.

The PatFinder Algorithm

- The algorithm starts looking for hits in the innermost RPC layer: if no hit is found, the search continues in the following layer.
- Starting from one of these hits, a coincidence window (i.e. η/ϕ bins) is opened in the following layers. Whenever the algorithm finds a new hit, it is added to the array containing all previous hits.
- If more hits lie in the same coincidence window, only the one that is closest in η and ϕ to the line connecting the first hit and the interaction point (IP).
- Per every hit in the innermost layer a pattern of hits is produced.
- Patterns may contain up to 9 hits.
- The p_T estimate comes from the deflection of the candidate pattern from the previous straight line.

Method 1 : minimize |*g_eta – trk_ms_eta*|

- Simulations provide information about the global eta coordinate (g_eta) of each hit and the eta coordinate of the muon entering the spectrometer (trk_ms_eta).
- The strips included in the pattern are the closest to trk_ms_eta.

Method 2 : central hits

Method 3 : infinite-pT track

Method 1 : minimize |*g_eta – trk_ms_eta*|

Method 2 : central hits

- Simulations provide the global z coordinate of each hit (g_z).
- Strips in the pattern are the closest to the center of the g_z distribution per each station.

Method 3: infinite-pT track

Method 1 : minimize |*g_eta – trk_ms_eta*|

Method 2: central hits

Method 3 : infinite-pT track

- Simulations provide information about all global coordinates of the hits (g_x, g_y, g_z), trk_ms_eta, and the angle of the muon track extrapolated to the interaction point (trk_eta).
- Reconstruction of the expected infinite-pT track starting from the BI or BM1 strip closest to trk_ms_eta:

$$z(R) = R_0 \frac{e^{2 \cdot \text{trk}} \text{ms}_{\text{eta}} - 1}{2 \cdot e^{\text{trk}} \text{ms}_{\text{eta}}} + (R - R_0) \frac{e^{2 \cdot \text{trk}} \text{eta} - 1}{2 \cdot e^{\text{trk}} \text{eta}}$$

• Strips in the pattern are the ones closest to the predicted z coordinate.

