Beam Transport System for LPA-driven EUV FEL

Mihail Miceski

Content

- Condition for FEL radiation
- Challenges for FEL
- Initial beam parameters and beamline layout
- Capture block options
- Beam dynamics through the beamline
- Injection error effect
- Initial beam mismatch effect
- FEL radiation
- Conclusion

FEL radiation in EUV regime

Requirements for FEL:

$$\epsilon_n < \epsilon_{coh,n} = \lambda_r / 2\pi$$
$$\sigma_{\delta} < \frac{1}{2}\rho$$
$$L_{g,1D} < Z_R = \pi w_0^2 / \lambda_r$$

What do we have?

Parameter	Symbol	Specification
Undulator type		SwissFEL U19
Lattice		UND-QD-UND-QF
Undulator period	λ_u	19 mm
Undulator length	lu	4 m (2 units of 2 m)
Undulator parameter	K_{u}	1.2 - 1.6 (by changing the undulator ga

Slice electron beam we are considering?

Slice parameter		Value	Unit	
Normalized emittance	ϵ_n	~0.3	π mm mrad	
Relative energy spread	σ_{δ}	~ 0.2	%	
Peak current	Ipeak	~4.5	kA	

LWFA electron beam

- Small initial normalized RMS transverse emittance
- Extremely short electron bunch (\sim fs)
- High peak current (few kA)

Challenges for FEL:

- High angular divergence (\sim mrad) \Rightarrow Significant emittance growth in the first drift
 - Large energy spread (few %) RMS normalized emittance not invariant anymore
- Significant space charge effect
 Halo formation
- Chromatic aberration effect
- Stability and repeatability

Initial electron beam parameters

• SIOM-like electron beam:

	Value	Unit
W	400	MeV
σ_{δ}	0.2	9%
Ipeak	5	kA
σ_{τ}	25	fs
$\epsilon_{nx}(\epsilon_{ny})$	0.3(0.1)	π mm mrad
$\sigma_{x'}(\sigma_{y'})$	0.4(0.2)	mrad
	$W \\ \sigma_{\delta} \\ I_{peak} \\ \sigma_{\tau} \\ \epsilon_{nx}(\epsilon_{ny}) \\ \sigma_{x'}(\sigma_{y'}) \end{cases}$	W 400 σ_{δ} 0.2 I_{peak} 5 σ_{τ} 25 $\epsilon_{nx}(\epsilon_{ny})$ 0.3(0.1) $\sigma_{x'}(\sigma_{y'})$ 0.4(0.2)

Beamline layout

High-quality electron beam generation from laser wakefield accelerators for driving compact free electron lasers

Ke Feng,^{1,*,‡} Kangnan Jiang,^{1,‡} Runshu Hu,^{1,2} Chen Lv,¹ Xizhuan Chen,^{1,2} Hai Jiang,¹ Shixia Luan,¹ Wentao Wang,^{1,†} and Ruxin Li^{1,2,3}

¹State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China

²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.

³School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

Capture block

Active plasma lens

Parameter	Value	Unit	
Length	70	mm	
Radius	1	mm	
Gradient	~77	T/m	
Discharge current	~385	A	

Set of three permanent quadrupole magnets

	Parameter	Value	Unit
First magnet	G_1	~300	T/m
Second magnet	G_2	~250	T/m
Third magnet	G ₃	~100	T/m

Beam dynamics

Active plasma lens

Set of three permanent quadrupole magnets

Transmission efficiency and emittance degradation affected by injection error

Active plasma lens

Set of three permanent quadrupole magnets

Restriction:

Shift of the beam center at the undulator position should be less than a half of the transverse sigma beam size.

Result:

The injection error should not exceed $\pm 2 \ \mu m$

Note:

Random injection error cannot be corrected by using correctors along the beamline.

Transmission efficiency and emittance degradation affected by mismatch

• Assumed 15% mismatch in initial Twiss parameters (β and α increased by 15% from ideal values).

Active plasma lens

Set of three permanent quadrupole magnets

Simulated FEL radiation

- Time-dependent SASE FEL simulation using GENESIS.
- Input beam parameters from the multiparticle tracking transport analysis.
- Central wavelength: **30.7 nm**
- Pulse energy at saturation: ~ 40 μJ
- Peak power: ~ 9 GW
- Averaged on 15 shot noise seeds for statistics.

Figure 3: Radiation gain over the undulator length. The solid line represents the mean of the 15 shots with different shot noises and the shaded region is the standard deviation.

Figure 4: Gaussian fit of the averaged spectrum of the produced EUV photon pulses for a 15 shots with different shot noises.

Conclusion

- Designed a compact beamline using APL and PQMs for beam transport.
- APL and PQMs deliver comparable performance.
- APL offers greater flexibility and its focusing strength is tunable via current (prototype under development).
- Preserve low emittance (\sim 0.3 mm·mrad) and high peak current (\sim 4.5 kA).
- Beam mismatch simulations show no significant emittance growth and no significant beam loss.
- Injection error within the specified range does not lead to significant losses.
- FEL saturation reached at 30.7 nm.

