Gamma-Hadron separation

Fernanda Heredia - Claudio Casentini – Gonzalo Rodriguez

26/03/2025

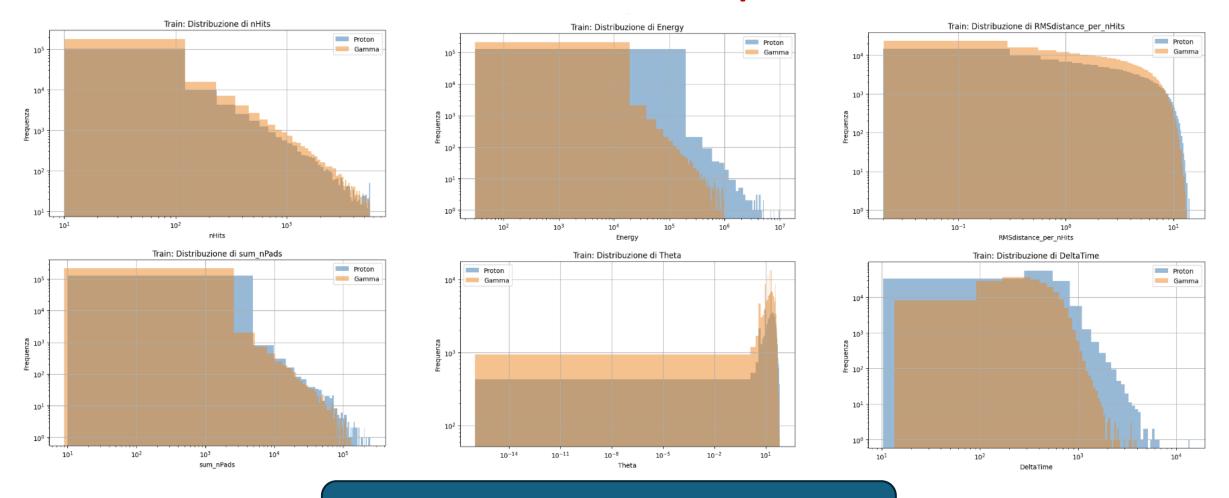
Gamma-Hadron separation Machine learning

Handling Complex Data

Experimental data exhibits non-linear relationships that traditional methods struggle to capture;

•Learning Complex Patterns

Models like Random Forest and/or XGBoost are powerful to uncover intricate relationships between different features in order to effectively distinguish between Proton and Gamma events;


Automation & Adaptability

ML-based approaches automate the classification process, reduce human error, and adapt as new data becomes available.

Continuous Evaluation & Optimization

Performance metrics (accuracy, AUC, precision, recall) provide immediate feedback, enabling ongoing model improvements and informed decision-making.

Gamma-Hadron separation

No clear separation using distributions of single variables

Gamma-Hadron separation Multivariate analysis

Multivariate Analysis: Variables & Their Combination

- Event Intensity & Physical Parameters:
 - nHits: Total number of RPC hits in the event.
 sum_nPads & mean_nPads: Overall intensity measures, capturing the total and average number of activated pads.
 Energy, Theta: Event's energy and incident angle.

• Spatial Distribution Metrics:

RMSdistance: Root mean square distance of all hits from the event's centroid (computed from xRPC and yRPC). **RMSdistance_per_nHits:** Normalized RMS distance, dividing by the number of hits to adjust for event multiplicity.

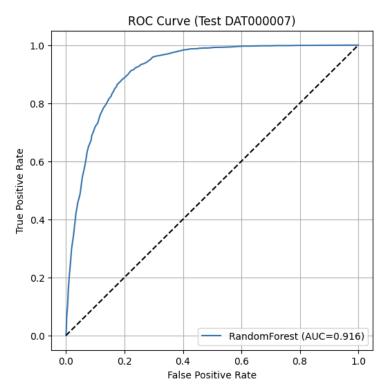
• Temporal Spread:

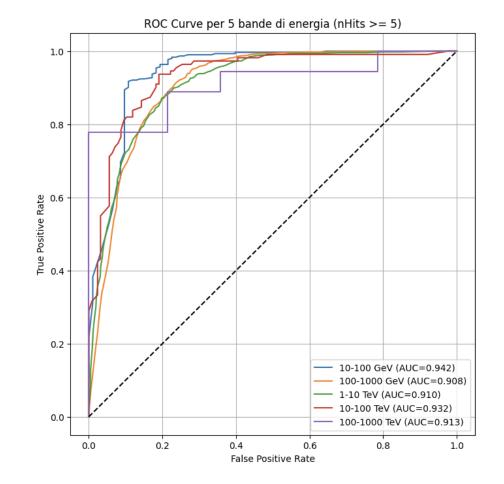
DeltaTime: Time difference between the first and last hit, quantifying the event duration.

• Hit Concentration & Distribution Shape:

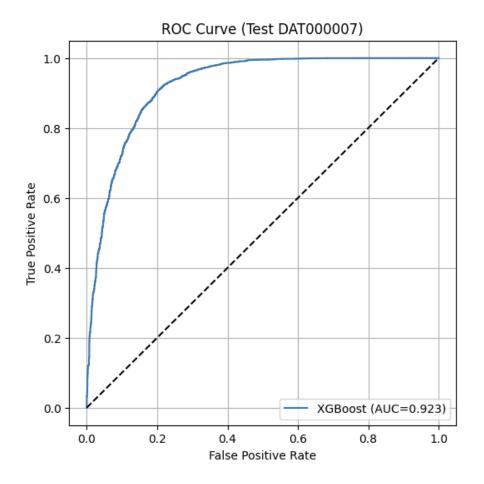
fractionHits20 & fractionHits40: Fractions of hits within 20 and 40 units from the centroid, indicating how concentrated the event is.

• Combination Strategy:


By integrating geometric, intensity, and temporal features, the classifier can capture complex, non-linear correlations that a single parameter alone would miss—resulting in a more robust and discriminative model.


Gamma-Hadron separation Random forest

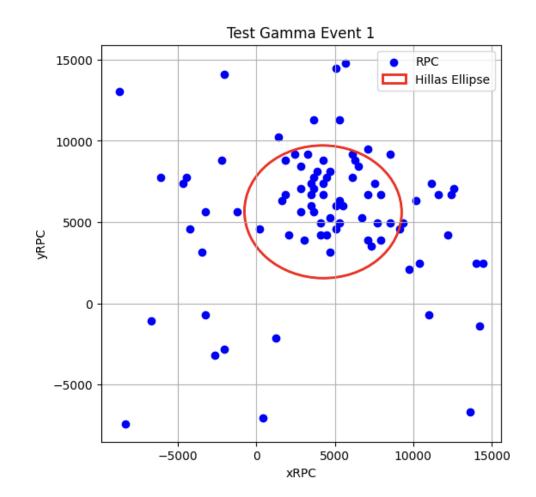
Confusion Matrix (Test DAT000005): [[1709 572] [282 3630]]


Classification Report (Test DAT000005):

	precision	recall	f1-score	support	
Proton	0.86	0.75	0.80	2281	
Gamma	0.86	0.93	0.89	3912	
accuracy macro avg weighted avg	0.86 0.86	0.84 0.86	0.86 0.85 0.86	6193 6193 6193	

Gamma-Hadron separation XGBoost

Confusion Matrix (Test DAT000005): [[1717 564] [245 3667]]


Classification Report (Test DAT000005): precision recall f1-score support 0.88 0.75 0.81 2281 Proton 0.87 0.90 3912 0.94 Gamma 0.87 6193 accuracy 0.85 macro avg 6193 0.87 0.85 weighted avg 0.87 0.87 0.87 6193

Gamma-Hadron separation Future steps

- Include more dataset to the training -> from 100 datasets to 1000;
- •Include more parameter to the multivariate analysis, like the LDF;

•Compare our results with the Gamma-Hadron separation of SWGO;

Gamma-Hadron separation IACT method

