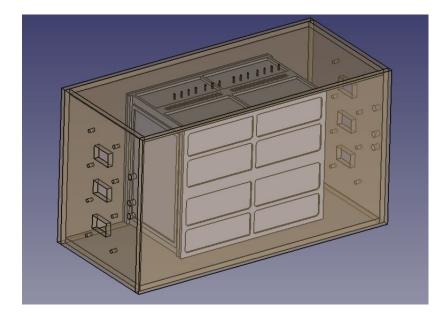
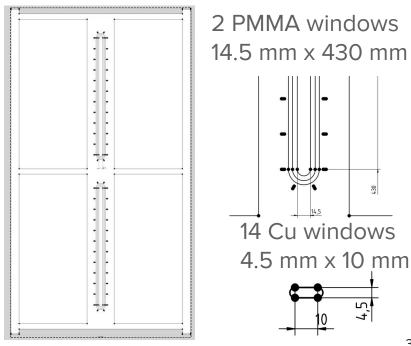


CYGNO simulations update


Giulia D'Imperio


24/03/25

CYGNO-04 geometry

CYGNO-04 geometry

• New CAD design with calibration windows on copper and PMMA

Calibration simulation

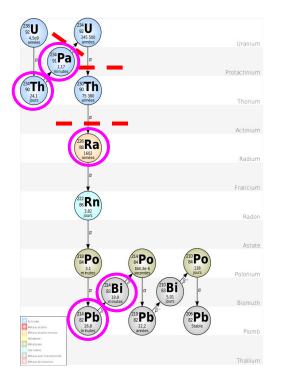
- A preliminary estimate of the 55-Fe source rate was presented by Zahoor at last <u>simulation meeting</u>
- Expected about 560 Hz assuming
 - 1.5 MBq activity
 - 2 PMMA windows 80 mm x 402 mm
 - \circ 14 Cu windows 4.5 mm x 14.5 mm
- Target rate: ~20 Hz
- In new design holes are narrower, this will reduce the rate
 - new design is now implemented in github and can be checked <u>https://github.com/CYGNUS-RD/geometry/tree/master/cygno_04_v3</u>
- Another option to reduce the rate could be using a thin layer of PMMA in the windows (attenuation length for 6 keV gamma is 0.5 mm [*])
 [*] <u>https://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/pmma.html</u>

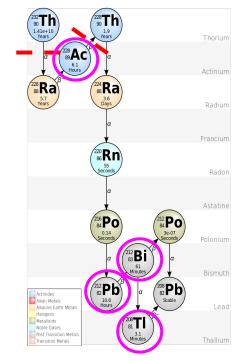
Radioactivity measurements

Field cage radioactivity measurements

- Review and rearrangement of HPGe measurements presented by Donatella at Cagli meeting
- Gamma emitters in U and Th radioactive chains are measured independently
- Secular equilibrium may be broken in specific points of the chains
 - → some measurements are not really independent

From **Donatella's presentation**


PET+Cu FC with glue


Kapton+Cu FC _____

	Larger region of central peak			Smaller region of central peak			Larger region of central peak				Smaller region of central peak			
	Nuclides	Activity (Bq/kg)	Uncert. (Bq/kg)	Limit (Bq/kg)	Activity (Bq/kg)	Uncert. (Bq/kg)	Limit (Bq/kg)	Nuclides	Activity (Bq/kg)	Uncert. (Bq/kg)	Limit (Bq/kg)	Activity (Bq/kg)	Uncert. (Bq/kg)	Limit (Bq/kg)
38	Th-234	0.09	0.27	0.53	-	-	-	Th-234	-	-	-	-	-	-
	Pa-234m	-	-	-	-	-	-	Pa-234m	0.62	0.44	1.34	4.42 · 10-3	0.29	0.48
- Ä	Ra-226	8.06 · 10 ⁻³	9.70 · 10 ⁻³	24.01 · 10 ⁻³	3.39 · 10 ⁻³	2.34 · 10 ⁻³	7.23 · 10 ⁻³	Ra-226	6.98 · 10 ⁻³	4.24 · 10 ⁻³	14.02 · 10 ⁻³	18.21 · 10 ⁻³	6.43 · 10 ⁻³	-
) C	Pb-214	8.06 · 10 ⁻³	9.70 · 10 ⁻³	24.01 ·10 ⁻³	18.51 · 10 ⁻³	7.45 · 10 ⁻³	-	Pb-214	17.61 · 10 ⁻³	11.81 · 10 ⁻³	36.92 · 10 ⁻³	25.10 · 10 ⁻³	9.36 · 10 ⁻³	-
	Bi-214	-	-	-	2.06 · 10 ⁻³	2.46 · 10 ⁻³	6.11 · 10 ⁻³	Bi-214	5.41 · 10 ⁻³	4.54 · 10 ⁻³	12.91 · 10 ⁻³	12.13 · 10 ⁻³	8.84 · 10 ⁻³	26.61 · 10-3
	Ac-228	0.36 · 10 ⁻³	14.91 · 10 ⁻³	25.02 · 10 ⁻³	14.42 · 10 ⁻³	6.20 · 10 ⁻³	-	Ac-228	5.05 · 10 ⁻³	13.82 · 10 ⁻³	27.83 · 10 ⁻³	10.12 · 10 ⁻³	5.86 · 10 ⁻³	19.74 · 10-3
232	Pb-212	25.81 · 10 ⁻³	9.99 · 10 ⁻³	-	19.52 · 10 ⁻³	8.87 · 10 ⁻³	-	Pb-212	-	-	-	-	-	-
	Bi-212	57.03 · 10 ⁻³	33.94 · 10 ⁻³	0.11	9.25 · 10 ⁻³	22.53 · 10 ⁻³	46.31 · 10 ⁻³	Bi-212	-	-	-	-	-	-
È	Tl-208	26.83 · 10 ⁻³	10.40 · 10 ⁻³	43.92 · 10 ⁻³	12.32 · 10 ⁻³	6.28 · 10 ⁻³	22.61 · 10 ⁻³	Tl-208	21.83 · 10 ⁻³	11.13 · 10 ⁻³	40.03 · 10 ⁻³	16.92 · 10-3	8.61 · 10 ⁻³	31.20 · 10-3
-	U-235	10.72 · 10 ⁻³	7.69 · 10 ⁻³	23.41 · 10 ⁻³	1.04 · 10 ⁻³	6.17 · 10 ⁻³	11.23 · 10 ⁻³	U-235	12.54 · 10 ⁻³	8.37 · 10 ⁻³	26.31 · 10 ⁻³	4.15 · 10-3	6.93 · 10 ⁻³	15.62 · 10-3
	K-40	0.16	0.07	-	0.12	0.06	-	K-40	-	-	-	14.31 · 10-3	52.71 · 10 ⁻³	0.10
	Cs-137	5.96 · 10 ⁻³	3.65 · 10 ⁻³	12.01 · 10 ⁻³	6.81 · 10 ⁻³	2.83 · 10 ⁻³	-	Cs-137	-	-	-	0.30 · 10-3	2.27 · 10 ⁻³	4.03 · 10 ⁻³
	Co-60	-	-	-	-	-	-	Co-60	-	-	-	-	-	-

CL for limits not specified

Radioactive chains and equilibrium

- Secular equilibrium may be broken (in principle) in correspondence to isotopes with long half-life
- Gamma emitters measured with HPGe screening (up to 10-100 μBq/kg precision)

PET+Cu FC with glue

____ Kapton+Cu FC

9

	Larger region of central peak				Smaller region of central peak			Larger region of central peak				Smaller region of central peak		
8	Nuclides	Activity (Bq/kg)	Uncert. (Bq/kg)	Limit (Bq/kg)	Activity (Bq/kg)	Uncert. (Bq/kg)	Limit (Bq/kg)	Nuclides	Activity (Bq/kg)	Uncert. (Bq/kg)	Limit (Bq/kg)	Activity (Bq/kg)	Uncert. (Bq/kg)	Limit (Bq/kg)
	Th-234	0.09	0.27	0.53	-	-	-	Th-234	-	-	-	-	-	-
	Pa-234m	-	-	-	-	-	-	Pa-234m	0.62	0.44	1.34	4.42 · 10-3	0.29	0.48
-73	Ra-226	8.06 · 10 ⁻³	9.70 · 10 ⁻³	24.01 · 10 ⁻³	3.39 · 10 ⁻³	2.34 · 10 ⁻³	7.23 · 10 ⁻³	Ra-226	6.98 · 10 ⁻³	4.24 · 10 ⁻³	14.02 · 10 ⁻³	18.21 · 10 ⁻³	6.43 · 10 ⁻³	-
Ċ	Pb-214	8.06 · 10 ⁻³	9.70 · 10 ⁻³	24.01 ·10 ⁻³	18.51 · 10 ⁻³	7.45 · 10 ⁻³	-	Pb-214	17.61 · 10 ⁻³	11.81 · 10 ⁻³	36.92 · 10 ⁻³	25.10 · 10 ⁻³	9.36 · 10 ⁻³	-
	Bi-214	-	-	-	2.06 · 10 ⁻³	2.46 · 10 ⁻³	6.11 · 10 ⁻³	Bi-214	5.41 · 10 ⁻³	4.54 · 10 ⁻³	12.91 · 10 ⁻³	12.13 · 10 ⁻³	8.84 · 10 ⁻³	26.61 · 10-3
	Ac-228	0.36 · 10 ⁻³	14.91 · 10 ⁻³	25.02 · 10 ⁻³	14.42 · 10 ⁻³	6.20 · 10 ⁻³	-	Ac-228	5.05 · 10 ⁻³	13.82 · 10 ⁻³	27.83 · 10 ⁻³	10.12 · 10 ⁻³	5.86 · 10 ⁻³	19.74 · 10-3
32	Pb-212	25.81 · 10 ⁻³	9.99 · 10 ⁻³	-	19.52 · 10 ⁻³	8.87 · 10 ⁻³	-	Pb-212	-	-	-	-	-	-
Ņ	Bi-212	57.03 · 10 ⁻³	33.94 · 10 ⁻³	0.11	9.25 · 10 ⁻³	22.53 · 10 ⁻³	46.31 · 10 ⁻³	Bi-212	-	-	-	-	-	-
É L	Tl-208	26.83 · 10 ⁻³	10.40 · 10 ⁻³	43.92 · 10 ⁻³	12.32 · 10 ⁻³	6.28 · 10 ⁻³	22.61 · 10 ⁻³	Tl-208	21.83 · 10 ⁻³	11.13 · 10 ⁻³	40.03 · 10 ⁻³	16.92 · 10-3	8.61 · 10 ⁻³	31.20 · 10-3
	U-235	10.72 · 10 ⁻³	7.69 · 10 ⁻³	23.41 · 10 ⁻³	1.04 · 10 ⁻³	6.17 · 10 ⁻³	11.23 · 10 ⁻³	U-235	12.54 · 10 ⁻³	8.37 · 10 ⁻³	26.31 · 10 ⁻³	4.15 · 10-3	6.93 · 10 ⁻³	15.62 · 10-3
	K-40	0.16	0.07	-	0.12	0.06	-	K-40	-	-	-	14.31 · 10-3	52.71 · 10 ⁻³	0.10
	Cs-137	5.96 · 10 ⁻³	3.65 · 10 ⁻³	12.01 · 10 ⁻³	6.81 · 10 ⁻³	2.83 · 10 ⁻³	-	Cs-137	-	-	-	0.30 · 10-3	2.27 · 10 ⁻³	4.03 · 10 ⁻³
	Co-60	-	-	-	-	-	-	Co-60	-	-	-	-	-	-

Isotopes in the same square are in the same sub-chain (same activity)

Field cage radioactivity measurements

• We can use all the information making a weighted average with variance-defined weights

$$ar{x} = rac{\sum_{i=1}^n \left(rac{x_i}{\sigma_i^2}
ight)}{\sum_{i=1}^n rac{1}{\sigma_i^2}}$$

- Use the activity **measurement** when the uncertainty (1 sigma) is small w.r.t. the central value
- Use the **limit** otherwise (k=1.645 corresponding to 95% CLfor one-sided gaussian)

→ this is the same convention used in all the other measurements by M.
Laubenstein

Field cage PET+Cu (glued)

Field cage PET_Cu (glued)	meas/lim (k=1.645)	activity [mBq/kg]	error (1 sigma)	comment
238U (upper chain)	L (<)	4.44E-01		from 234Th
238U (lower chain)	L (<)	1.13E-02		from Ra226 & Pb214
232Th (upper chain)	L (<)	2.45E-02		from Ac228
232Th (lower chain)	М	2.76E-02	7.05E-03	from Pb212 & Bi212 & Tl208
235U	L (<)	1.27E-02		
40K	М	1.60E-01	7.00E-02	
137Cs	М	5.96E-03	3.65E-03	

Background estimate form PET+Cu FC (see <u>Melba's presentation</u>)

Low energy range [1,20] keV (1.56 \pm 0.01) x 10⁵

evt per year

Low energy range [1,20] keV NR

 $(1.20 \pm 0.08) \times 10^3$

evt per year

[*] using activity central value (not limit)

Field cage kapton+Cu

Field cage kapton_Cu	meas/lim (k=1.645)	activity [mBq/kg]	error (1 sigma)	comment	ratio activities kapton/Cu		
238U (upper chain)	L (<)	7.24E-01		from 234mPa	1.63E+00		
238U (lower chain)	М	6.83E-03	3.99E-03	from Ra226 & Pb214 & Bi214	6.05E-01		
232Th (upper chain)	L (<)	2.27E-02		from Ac228	9.27E-01		
232Th (lower chain)	М	2.18E-02	1.11E-02	from TI208	7.90E-01		
235U	L (<)	1.14E-02		smaller ROI	9.01E-01		
40K	L (<)	8.67E-02		smaller ROI	5.42E-01		
137Cs	L (<)	3.73E-03		smaller ROI	6.27E-01		

ICP-MS measurement can give more precise measurement for 40-K and the primordial nuclides 238-U and 232-Th (upper chains)

• If we agree I will update the <u>CYGNO database</u>