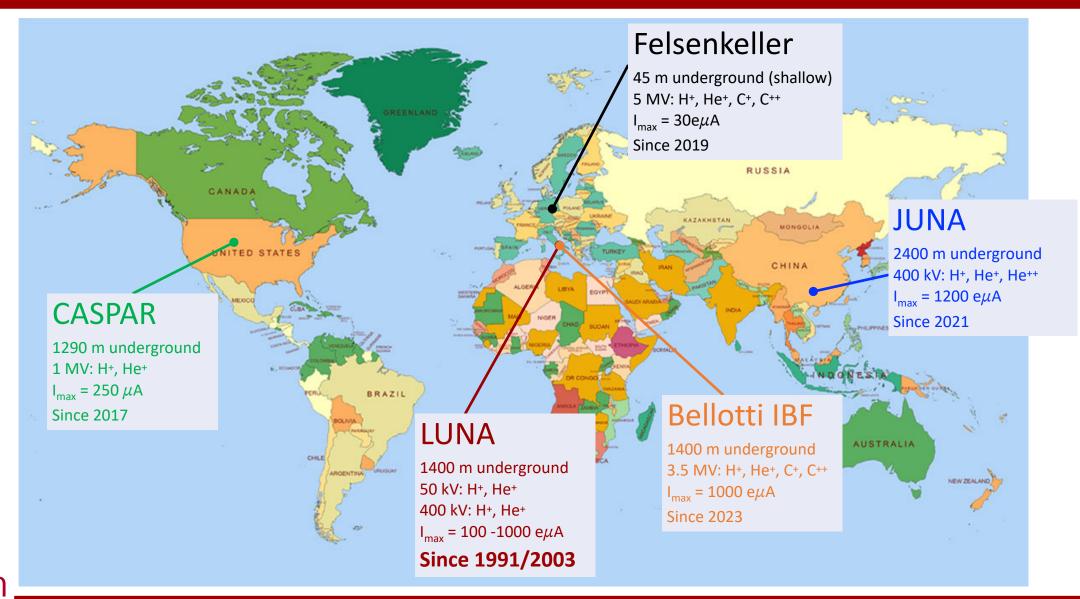
TARGET DEVELOPMENTS AT LUNA

Denise Piatti¹ and Matteo Campostrini²

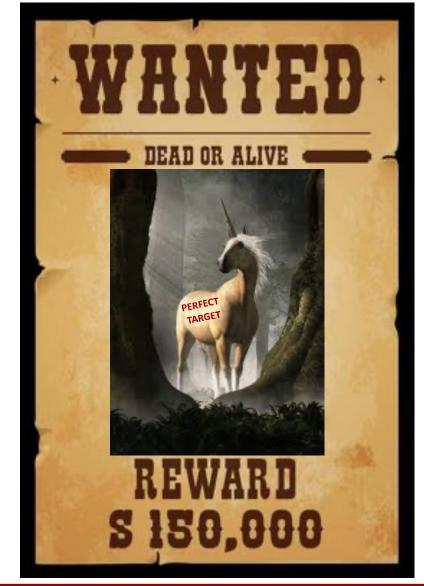
1 = University and INFN of Padua, via Marzolo 8 35136 Italy


2 = INFN - Laboratori Nazionali di Legnaro, viale dell'Università 2 35020 Italy

Speaking of LUNA

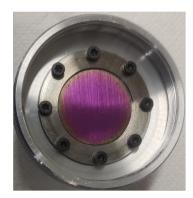
A successful 35 years long story...

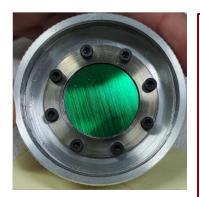
Reaction	Accelerator	Astrophysical Motivation/Scenario
$\underline{D(\alpha, \gamma)^6}$ Li; ${}^3\underline{He(\alpha, \gamma)^7}$ Be; $\underline{D(p, \gamma)^3}$ He	LUNA400kV	Big Bang Nucleosynthesis (BBN), Lithium problem(s)
<u>³He+³He</u> ; <u>D(р,ү)</u> ³He	LUNA50kV	pp-chain and Solar neutrinos
⁶ <u>Li(p,γ)</u> ⁷ Be	LUNA400kV	Stars, cosmic-ray spallation and BBN; Resonance NOT confirmed
12,13 <u>C(p,y)</u> 13,14 N	LUNA400kV	CNO cycle kick off reactions; only few, poorly constrained data
14.15N(p,γ)15,16O	LUNA400kV	CNO cycle bottleneck;
17,18O(p,a) $14,15$ N	LUNA400kV	CNO cycle; crucial for oxygen isotopic abundance in AGB stars
16, <u>17,18</u> O(p,γ) ^{17,18,19} F	LUNA400kV	CNO cycle and CNO leak
20,21,22Ne(p,γ)21,22,23Na	LUNA400kV	NeNa cycle; affecting abundances up to P
23 Na(p, γ) 24 Mg	LUNA400kV	NeNa-MgAl cycle link
25 Mg(p, γ) 26 Al	LUNA400kV	MgAl cycle; poorly constrained resonances dominate the rate
$^{13}C(\alpha,n)^{16}O,$ $^{22}Ne(\alpha,\gamma)^{26}Mg$	LUNA400kV	s-process crucial for production of isotopes heavier than iron

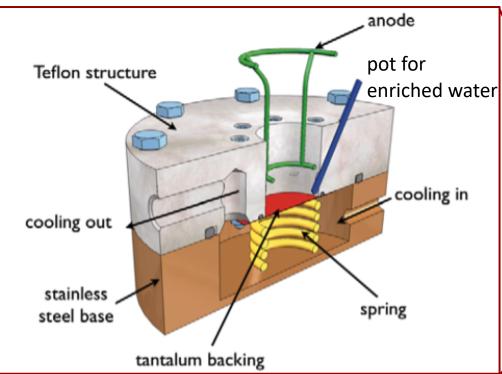

... but also painful...

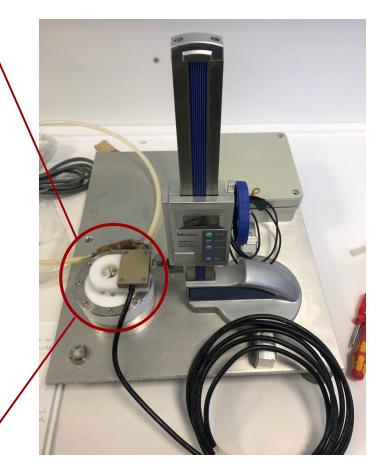
LUNA performs direct measurement for which some ingredients are required:

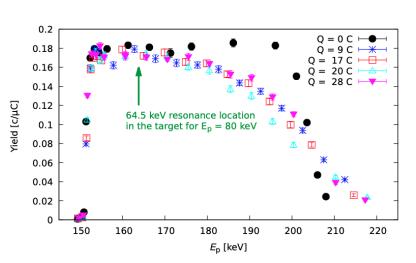
... indeed


The perfect target is a unicorn!




<u>The (recent) aim</u>: the first direct determination of the 64.5 keV resonance of the $^{17}O(p,\gamma)^{18}F$ reaction


<u>Technique</u>: anodic oxidation of Ta in enriched (at 90% level in ¹⁷O) water solution which acts as the electrolyte



<u>The (recent) aim</u>: the first direct determination of the 64.5 keV resonance of the $^{17}O(p,\gamma)^{18}F$ reaction

<u>Technique:</u> anodic oxidation of Ta in enriched (at 90% level in ¹⁷O) water solution which acts as a electrolyte

Target features [Gesué, R.M. et al., PRL 133 (2024), Caciolli, A. et al, EPJ A 48 (2012) and references therein]:

- easy and fast to produce (1h per target on average)
- uniform
- well known target stoichiometry, Ta₂O₅
- well known target stability (10-20% degradation with Q_{tot} = 25-30 C)
- well known voltage-thickness relation in the range 50 400 nm
- target areal density of 10¹⁷-10¹⁸ atoms/cm²
- online characterization via NRRA doping the solution with ¹⁸O
- if handled with care no contaminants introduced in the production

SO FAR IT SEEMS VERY CLOSE TO THE UNICORN!!!!
BUT....

SO FAR IT SEEMS VERY CLOSE TO THE UNICORN!!!!

BUT

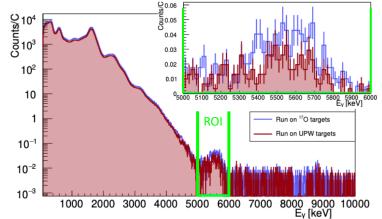
Ta backing is a sponge for contaminants (bulk and surface) [Campostrini, M. et al., EPJ ST 233 (2024)]:

- Good electrical
- and thermal conductivity
- high Z
- and of course suitable for anodic oxidation

- Superficial Fluorine can be reduced by 3 orders of magnitude via acid bath
- Boron contamination is reduced by 2 orders of magnitude via acid bath
- Deuterium, however, could be reduced by a factor of 4 applying a Mo coating to the Ta but this was not useful for the $^{17}\text{O}(\text{p},\gamma)^{18}\text{F}$ investigation

AND GUESS WHAT...

 Low H permeability [Katsuka H., J. Phys. Chem. Solids 43 (1982)]


SO FAR IT SEEMS VERY CLOSE TO THE UNICORN!!!! BUT

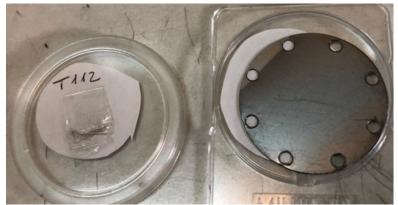
Ta backing is a sponge for contaminants (bulk and surface) [Campostrini, M. et al., EPJ ST 233 (2024)]:

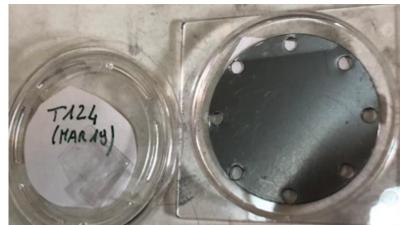
- Superficial Fluorine can be reduced by 3 orders of magnitude via acid bath
- Boron contamination is reduced by 2 orders of magnitude via acid bath
- Deuterium, however, could be reduced by a factor of 4 applying a Mo coating to the Ta but this was not useful for the $^{17}\text{O}(p,\gamma)^{18}\text{F}$ investigation

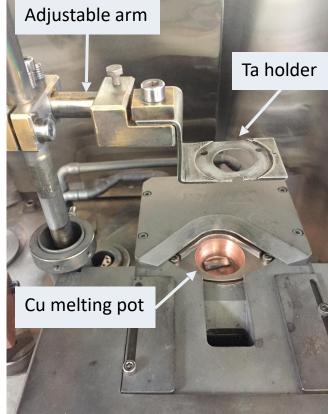
AND GUESS WHAT...

At this point you can only be smart [Gesué, R.M. et al., PRL 133

(2024)]

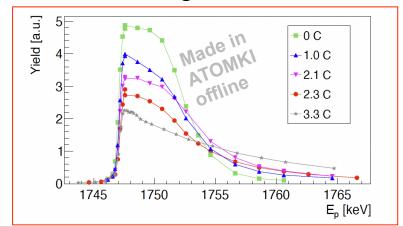


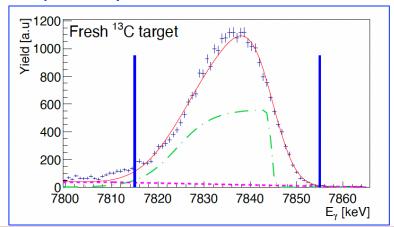

LUNA Solid Targets - Carbon Targets


<u>The aim:</u> the measurement of the ${}^{13}C(\alpha,n){}^{16}O$ reaction cross section.

<u>Technique:</u> Evaporation (PROUDLY) performed at ATOMKI, using a Leybold UNIVEX 350 vacuum evaporator, 99% enriched ¹³C

powder and Ta as backing


LUNA Solid Targets - Carbon Targets


<u>The aim:</u> the measurement of the ${}^{13}\text{C}(\alpha, n){}^{16}\text{O}$ and ${}^{12,13}\text{C}(p, \gamma){}^{13,14}\text{N}$ reaction cross sections.

<u>Technique:</u> Evaporation (PROUDLY) performed at ATOMK, using a Leybold UNIVEX 350 vacuum evaporator, 99% enriched ¹³C powder and Ta as backing

Target Features [Ciani, G.F. et al., PRL 127 (2021) and Ciani, G.F. et al., EPJ A 56 (2020)]:

- powder stable with time
- uniform
- high stability under proton irradiation
- target stability under α irradiation was poor -> setup designed to change target often
- Online monitoring such as NRRA not available -> Peak shape analysis

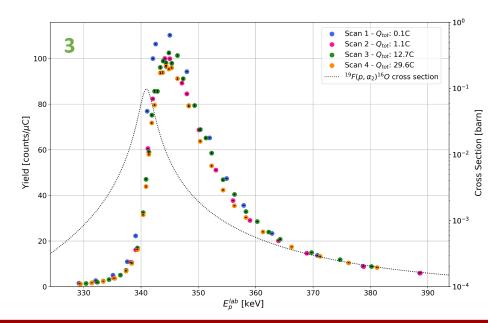
LUNA Solid Targets - Fluorine Targets

The aim: the measurement of the $^{19}F(p,\gamma)^{20}Ne$ reaction cross section

<u>Technique</u>:

- 1. Evaporation starting from CaF₂ powder, performed in ATOMKI (favorable stoichiometry but bad stability)
- 2. Implantation on Ta and Fe, performed at University NOVA in Lisbon, with 10¹⁵-10¹⁷ atoms/cm²
- 3. Fluorination, performed by external company, Ta was dipped in gaseous F₂ at 500 mbar for 2' and at 100°

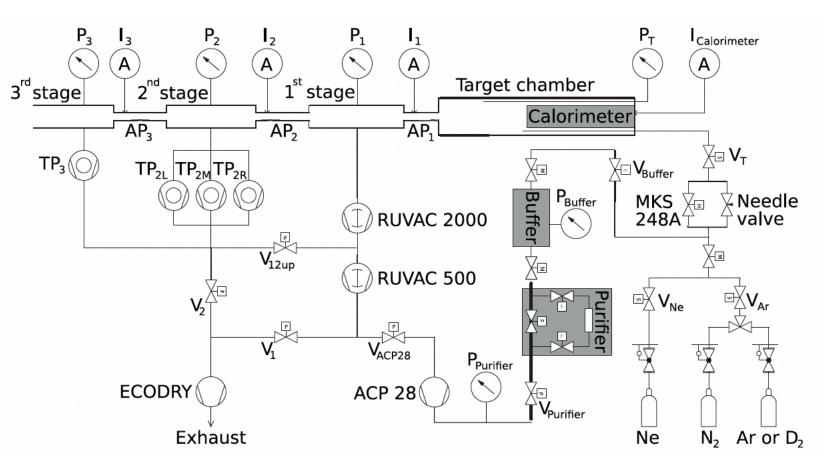
LUNA Solid Targets - Fluorine Targets


The aim: the measurement of the $^{19}F(p,\gamma)^{20}Ne$ reaction cross section

<u>Technique</u>:

- 1. Evaporation starting from CaF₂ powder, performed in ATOMKI (favorable stoichiometry but bad stability)
- 2. Implantation on Ta and Fe, performed at University Nova in Lisbon, with 10¹⁵-10¹⁷ atoms/cm² and HZDR in Dresden
- 3. Fluorination, performed by external company, Ta was dipped in gaseous F₂ at 500 mbar for 2' and at 100°

<u>Target features</u>:


- both target types thin as desired
- and stable up to high accumulated charge
- stoichiometry under investigation
- Boron content similar in both Fe and Ta

A paper is in preparation!

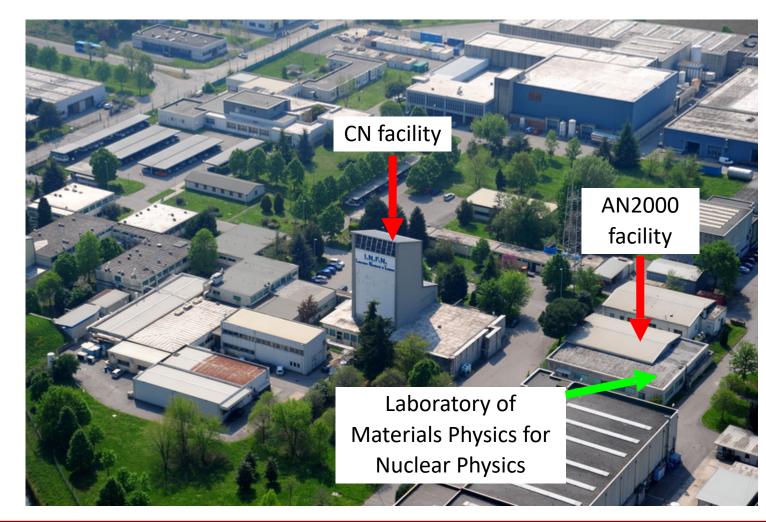
LUNA Targets - Gas target

[Ferraro F., et al., EPJ A 54 (2018); Mossa V., et al., EPJ A 56 (2020) and reference therein]

- Three differential pumping stages windowless gas target
- Pressure in the chamber 0.3 2 mbar and kept constant within 0.5%
- Target density of 10¹⁵ atom/cm²
- High stability under irradiation
- Recirculation mode for expensive gas
- Calorimeter for current reading
- High precision obtained for the p+D measurement
- High purity BUT contaminants along beamline and at the beam stop must be annoying (B, C, N and F)

Ultrasonic bath to reduce contaminants level and runs w. noble gas to subtract it

Speaking of Perspectives


NATIONAL LABORATORIES OF LEGNARO (LNL)

Other Laboratories involved in targets production:

- LNL (Padua-Italy)
- LNGS (L'Aquila-Italy)
- ATOMKI (Debrecen-Hungary)
- University NOVA (Lisbon-Portugal)
- HZDR (Dresden-Germany)
- Edinburgh University (UK)
- Notre Dame (USA)
-

Legnaro WG activities

LNL Group:

- Valentino Rigato (DT)
- Carlo Roncolato (PT)
- Matteo Campostrini (IIIT-TD)

Research Fields:

- Surface engineering and materials synthesis
- Characterizations (IBA, morphological Compositional and structural analysis)
- High Vacuum deposition systems design and development
- Ion beam irradiation
- Detector testing

INFN CSN3 nuclear physics

Solid targets development and characterization

INFN CSN5 interdisciplinary physics

Functional coatings with nanostructured multilayers Sigle ion irradiation for quantum technologies Ion-matter interaction and beam induced damage

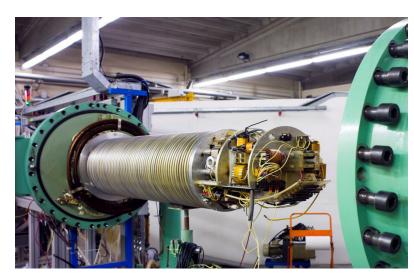
INFN Technological Transfer

Large area irradiations, accelerated tests for satellite components

Nanostructured coatings Mechanical reinforcement coatings

Legnaro laboratory activities and user's support

LNL Target service (technical support and IBA characterization) SPES (target analysis, beam diagnostics, coatings...)
Accelerator Division (Beam characterization, coating for RF accelerator windows)


......

LNL ion beam facilities

AN2000

Available beams:

- ¹H+ 0.2÷2.0 MeV
- 3He+ 0.2÷2.0 MeV
- 4He+ 0.2÷2.0 MeV
- ¹H+ and ⁴He+ μ-probe2-5 μm spot size

Main activities:

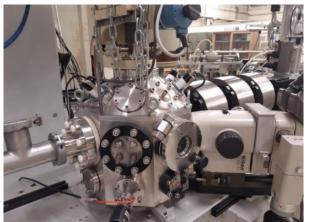
- IBA (EBS, NRA)
- ASIDI (Single ion irradiation)
- ASIF (large area irradiation LE-facility)
- Detector testing

CN

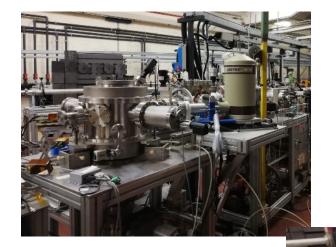
Available beams:

- ¹H⁺ 0.8÷5.5 MeV
- 2H+ 0.8÷5.5 MeV
- 3He+ 0.8÷5.5 MeV
- 4He+ 0.8÷5.5 MeV
- > Pulsed beam

Main activities:


- IBA (EBS,NRA and PIXE)
- ASIF (large area irradiation HE-facility)

LNL ion beam facilities


AN2000

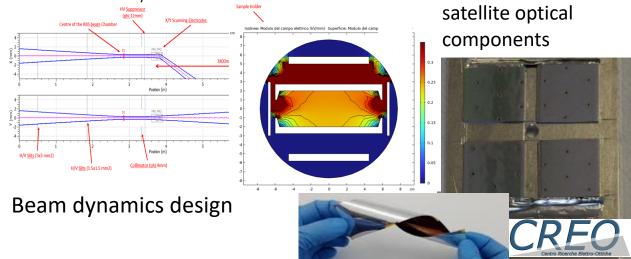
μ-probescatteringchamber(2-5 μmspot size)

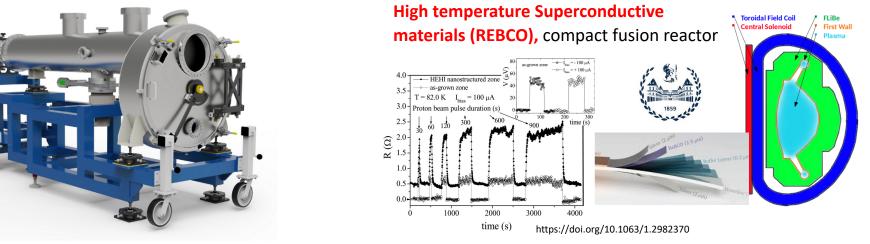
IBA
scattering
chamber
(1-25 mm²
spot size)

CN

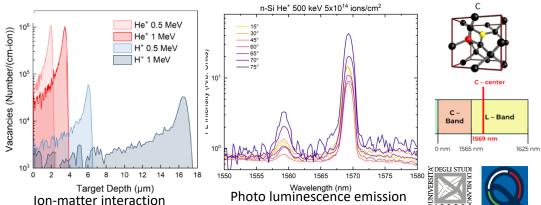
Total IBA scattering chamber (1-25 mm² spot size)

Irradiation Activities...

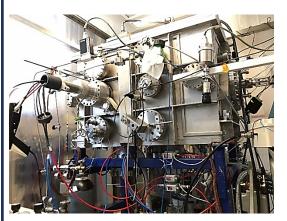


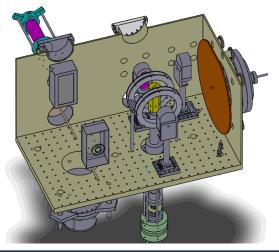

Large area ion beam irradiations

Large area ASIF irradiation facility


(ASI Supported Irradiation Facilities)

- Monochromatic Beams: 1H+, 4He+
- Energy: 0.2÷5.5 MeV
- Spatial uniformity: target ≤ ±1%
- XY beam scanning (up to 20cmx20cm)


Single Photon Emitters production for Quantum Technology



Pure metal and compounds materials synthesis

Characteristics:

- 3 sputtering source (50mmx140mm)
- 2 sputtering source (150mmx230mm)
- Active gettering system
- Optical emission plasma diagnostics for reactive processes
- Different power supply technologies (HiPIMS, DC, pulsed-DC, RF)
- 2 different sample holder

Materials:

Pure materials (Ta, Ti, Zr, Cr, Cu, Nb...)

Compounds:

- Oxides (natural O, ¹⁶O and ¹⁷O)
- Nitrides (natural N, 14N, 15N)
- Hydrides (natural H, Deuterium)

Sputtering systems

Alkali materials (Na, Mg,...)

Materials:

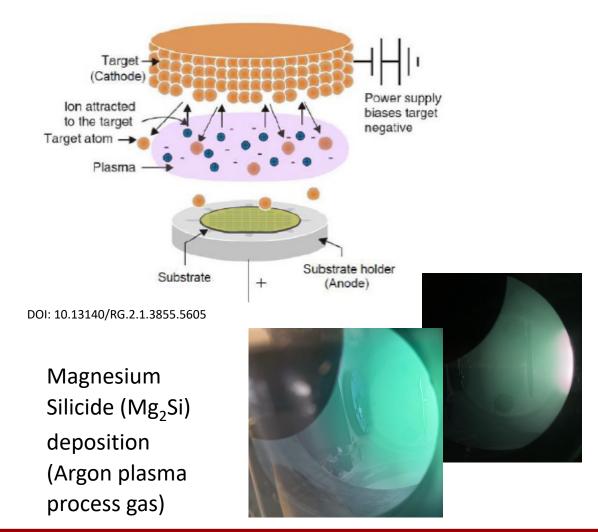
NaNbO₃, Mg₂Si

Characteristics:

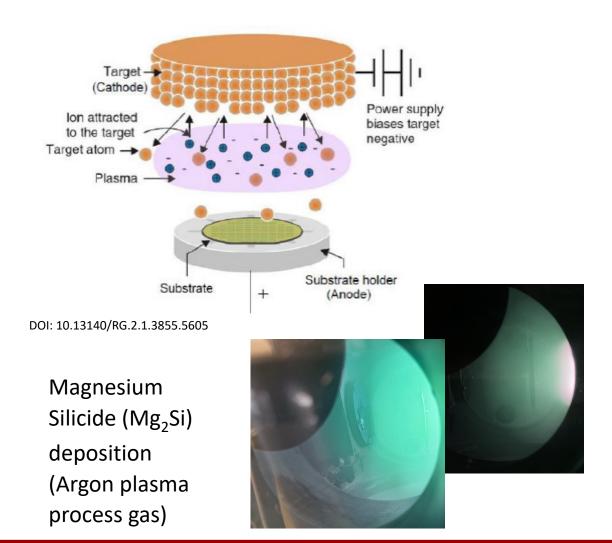
Heated sample holder (up to 600 °C)

Characterization techniques:

- Optical microscope
- SEM (Scanning electron microscope)
- EDS (Energy-dispersive X-ray spectroscopy)
- AFM (Atomic force microscope)


Avaible in other collaborators laboratory:

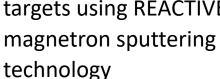
- XRD (X-ray Diffraction)
- Raman
- TEM (transmission electron microscope)
- STEM (scanning TEM)
- FIB (focused ion beam)


Magnetron sputtering PVD deposition process

Magnetron sputtering PVD deposition process

Process control and system improvements

High quality coatings


Ion bombardment assisted film growth

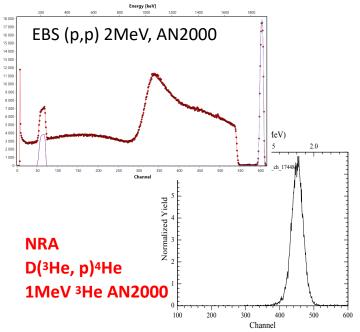
Low Oxygen contamination

Active gettering system

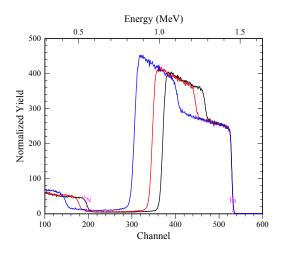
Synthesis of compound targets using REACTIVE

Nitrides, Oxides and Hydrides with natural and isotopically enriched gas

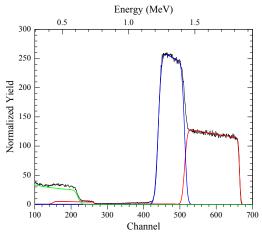
Plasma study and monitoring



Optical emission spectroscopy (UV-VIS) and Time resolved OES

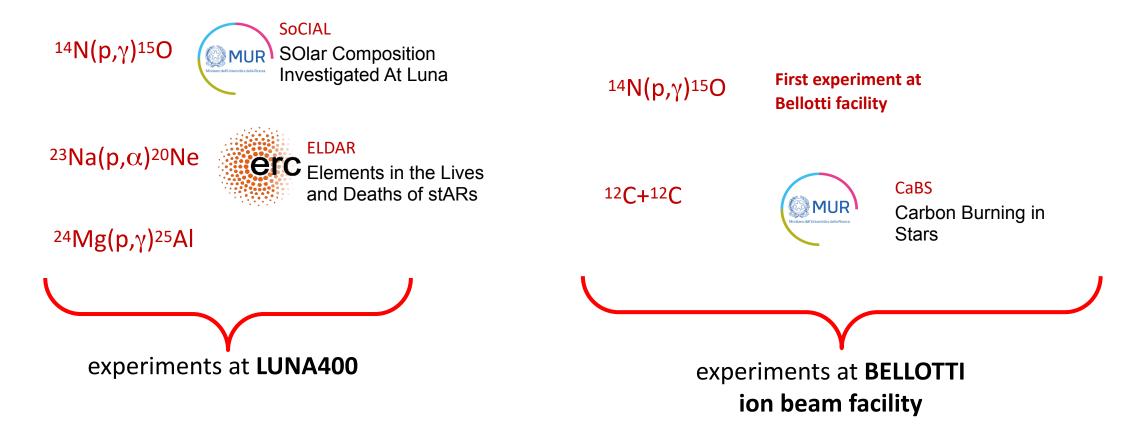


Nitrides targets Ta¹⁵N



EBS (α,α) 1.6MeV, AN2000

Oxides targets Ta₂natO₅

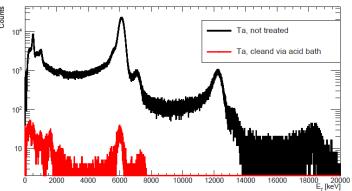

EBS (α,α) 2MeV, AN2000

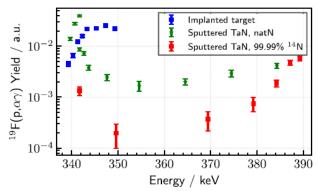
LNL is involved in LUNA experiments

Targets production, characterization and experimental supports

¹⁴N(p, γ)¹⁵O target production and characterization (first IBF experiment)

- Fluorine contaminant reduction
- Oxygen contaminant reduction
- RBS characterization
- High endurance target

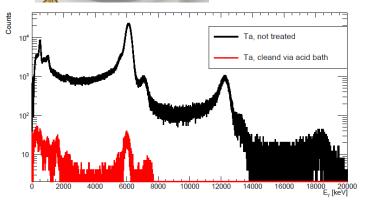


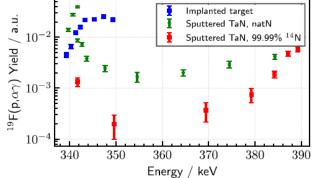


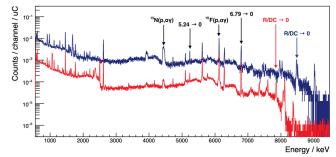
¹⁴N(p, γ)¹⁵O target production and characterization (first IBF experiment)

- Fluorine contaminant reduction
- Oxygen contaminant reduction
- RBS characterization
- High endurance target

 19 F(p, $\alpha\gamma$) 16 O @ LNGS facility


¹⁴N(p, γ)¹⁵O target production and characterization (first IBF experiment)


- Fluorine contaminant reduction
- Oxygen contaminant reduction
- RBS characterization
- High endurance target



¹⁴N isotopically enriched (99.99%)

¹⁴N(p, γ)¹⁵O target production and characterization (first IBF experiment)

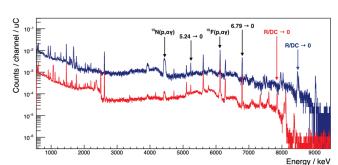
- Fluorine contaminant reduction
- Oxygen contaminant reduction
- RBS characterization
- High endurance target

¹⁴N isotopically enriched (99.99%)

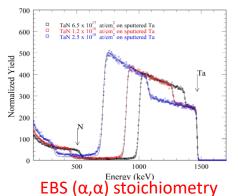
2000

TaN/Ta/Si
SiO₂/Si lab. standard

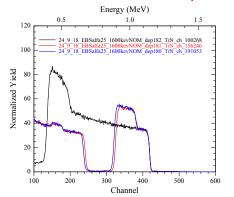
1500

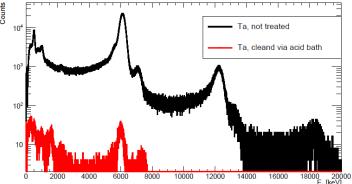

1000

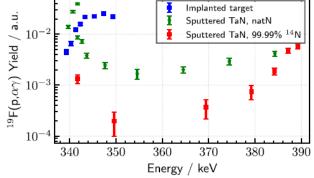
16O(d,p₁)


14N(d,p₄)

16O(d,p₀)

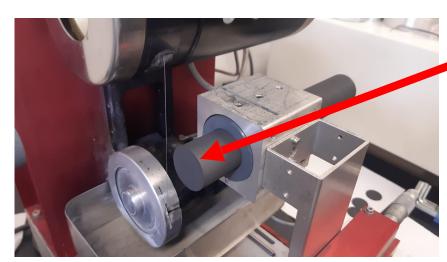

NRA Oxygen No detectable $^{16}O(d,p_0)^{17}O$


DOI: 10.1140/epja/s10050-025-01658-7 DOI: 10.1140/epja/s10050-025-01561-1 DOI: 10.1140/epjs/s11734-024-01349-2



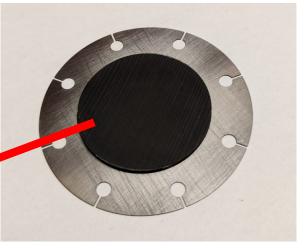
measurement TaN compound

EBS (α,α) measurement stoichiometry TiN compound


Target design and production

High lifetime:

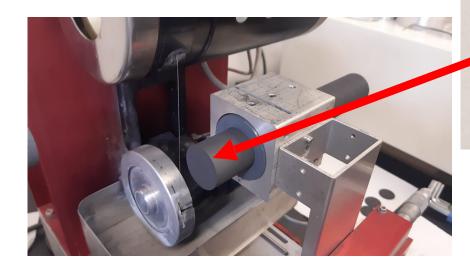
Max ¹²C implantation power: 400 W


Expected lifetime: 50-100 C

 Characterization pre/post irradiation with IBA (AN2000, CN), SEM – EDS, AFM, RAMAN

Purity: semiconductor grade

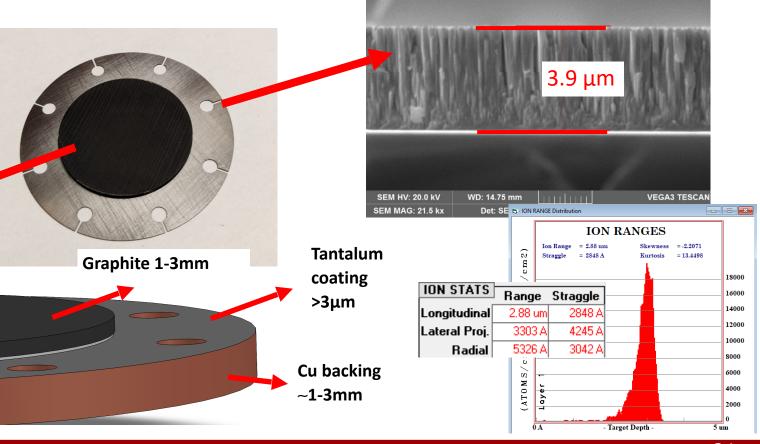
Structure: selected fine grain size


Target design and production

High lifetime:

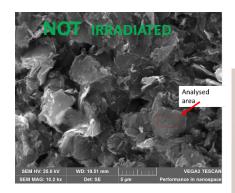
Max ¹²C implantation power: 400 W

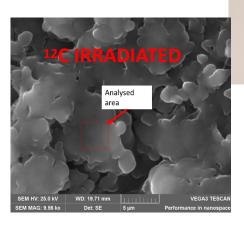
Expected lifetime: 50-100 C


 Characterization pre/post irradiation with IBA (AN2000, CN), SEM – EDS, AFM, RAMAN

Purity: semiconductor grade

Structure: selected fine grain size


Thich Ta-PVD coating:prevent BIB for eventual target failure



Target testing and analysis

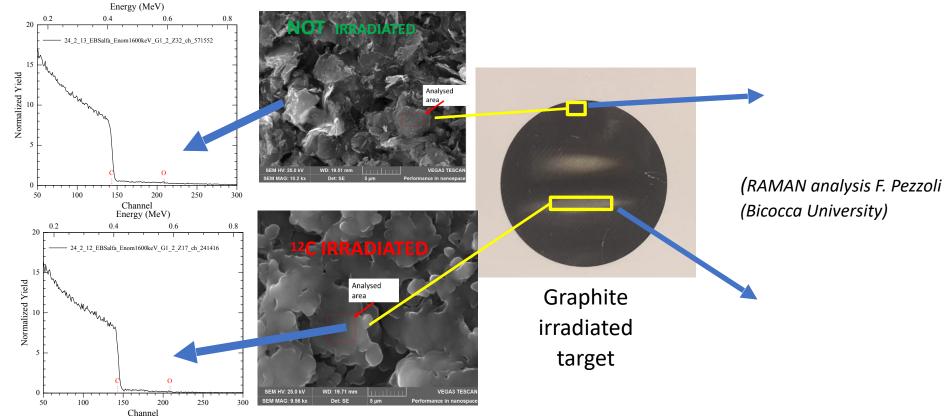
Graphite irradiated target

Preliminary irradiation test performed at Felsenkeller HZDR (2024) E. Masha (HZDR) unpublished data LUNA test performed at IBF 2025 F. Ferraro (LNGS) unpublished data

Sintered Graphite

No evidence of damage after 7.5C of 2.9MeV of ¹²C+ beam

Other Carbon


Strong damage after 0.6C of 2.9MeV of ¹²C+ beam

Target testing and analysis

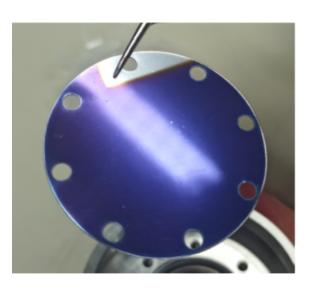
RAMAN spectroscopy proves amorphization of graphite surface **IBA** analysis shows no contamination on irradiated regions

Preliminary irradiation test performed at Felsenkeller HZDR (2024) E. Masha (HZDR) unpublished data LUNA test performed at IBF 2025 F. Ferraro (LNGS) unpublished data

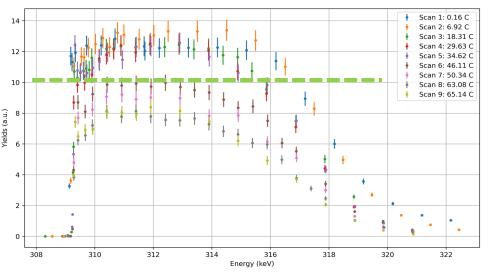
Sintered Graphite

No evidence of damage after 7.5C of 2.9MeV of ¹²C+ beam

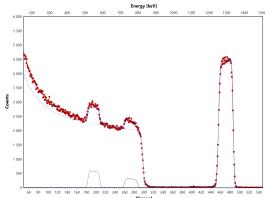
Other Carbon


Strong damage after 0.6C of 2.9MeV of ¹²C+ beam

²³Na(p, α)²⁰Ne experiment



First test of NaNbO₃ Sputtered Target endurance tests ²³Na(p,γ)²⁴Mg, BGO detector



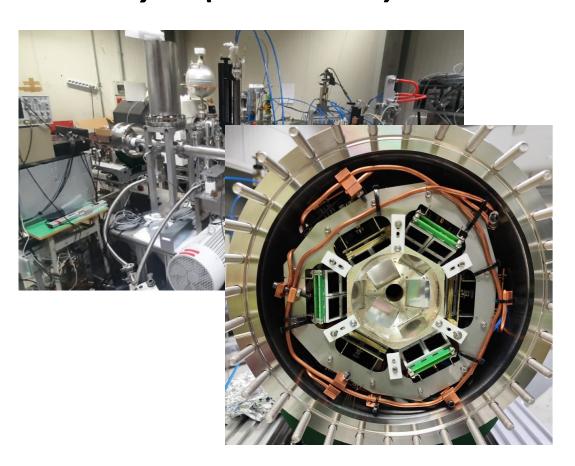
The target was:

- ✓ stable in air
- √ good adhesion
- √ good uniformity
- ✓ RBS confirm a good stoichiometry
- SEM and EDS shows nanometrically crystal enriched in Na

NO degradation up to 35C

²³Na(p,γ)²⁴Mg, BGO detector

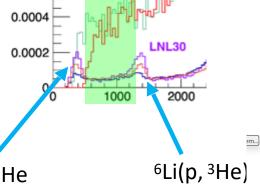
L. Barbieri and C. Bruno (PI)


RBS spectrum NaNbO $_3$ /SI E α =1.6MeV Θ_{EBS} =160°

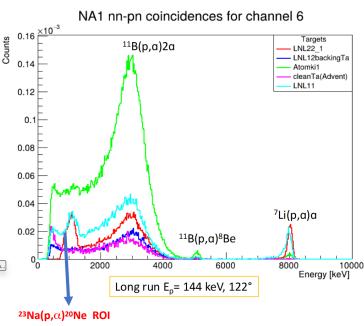
23 Na(p, α) 20 Ne experiment

ELDAR experiment setup for 23 Na(p, α) 20 Ne analysis (PI C. Bruno)

²³Na(p, α)²⁰Ne experiment


ELDAR experiment setup for 23 Na(p, α) 20 Ne analysis (PI C. Bruno)

 6 Li(p, α) 3 He


²³Na ROI

0.0008

0.0006

The measurement cannot be performed due to the BIB caused by 11B and 6Li contamination

L. Barbieri and C. Bruno

23 Na(p, α) 20 Ne experiment

B reduction using PVD Ta thick coating

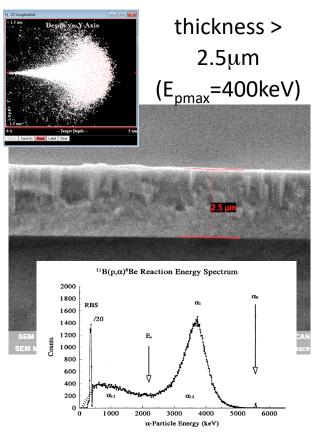
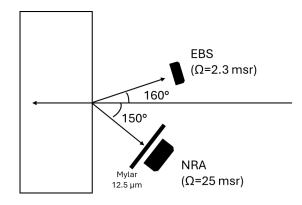
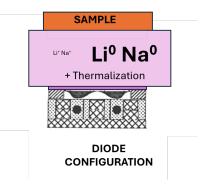
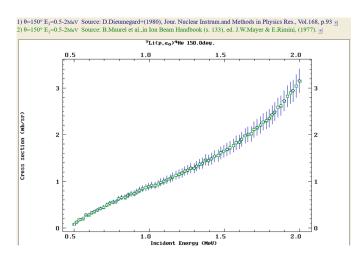



Fig. 1. Energy spectrum of α -particles from 11 B(p, α) 8 Be reaction at incident beam energy of 660 keV and detector at 150 $^\circ$.

J.Liu et al. NIMB190(2002)107

SETUP for NRA @ AN2000

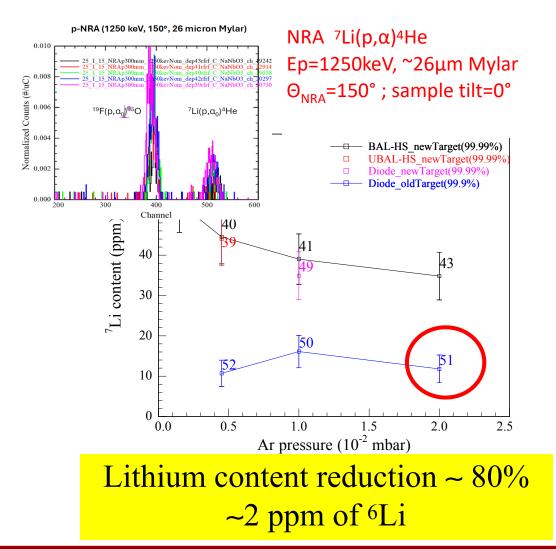


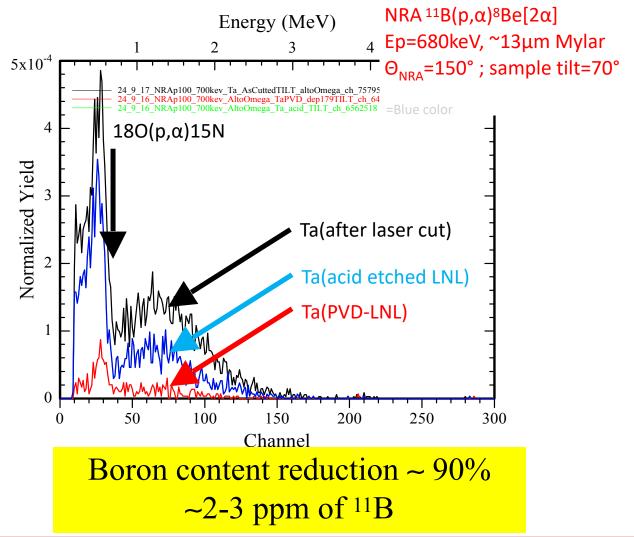

Li reduction in Vapour phase

NEW setup with diode sputtering (No magnetic field)
44: 40 min, HPS, 175 mm, diode, 4.5E-3 mbar, 150W
45: 80 min, HPS, 175 mm, diode, 1.0E-2 mbar, 150W
46: 80 min, HPS, 120 mm, diode, 1.0E-2 mbar, 150W
47: 80 min, HPS, 120 mm, diode, 1.0E-2 mbar, 200W
48: 60 min, HPS, 120 mm, diode, 1.0E-2 mbar, 250W
49: 60 min, HPS, 120 mm, diode, 1.0E-2 mbar, 300W

OLD TARGET

50: 60 min, HPS, 120 mm, **diode**, 1.0E-2 mbar, 300W **51:** 50 min, HPS, 120 mm, **diode**, 2.0E-2 mbar, 400W **52:** 50 min, HPS, 120 mm, **diode**, 4.5E-3 mbar, 400W




23 Na(p, α) 20 Ne experiment

Boron and Lithium contamination reduction: results

LUNA Collaboration

- D. Basak, T. Chillery, R. Gesue'*, M. Junker, F. Ferraro | INFN LNGS *and GSSI, Italy
- R. Biasissi, C. Broggini, A. Caciolli, R. Menegazzo, D. Piatti, J. Skowronski | Università di Padova and INFN Padova, Italy
- A. Formicola, C. Gustavino, M. Vagnoni* | INFN Roma 1 *and Università degli Studi della Campania, Italy
- D. Bemmerer, A. Boeltzig, E. Masha J HZDR Dresden, Germany
- L. Csedreki, Z. Elekes, Zs. Fülöp, Gy. Gyürky, T. Szücs | MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Konkoly Observatory and ELTE University Budapest, Hungary
- U. Battino, O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- P. Corvisiero, P. Prati, M. Rossi, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- R. Depalo, A. Guglielmetti | Università di Milano and INFN Milano, Italy
- A. Best, D. Dell'Aquila, A. Di Leva, D. Mercogliano, G. Imbriani, D. Rapagnani | Università di Napoli and INFN Napoli, Italy
- F. Cavanna, P. Colombetti, G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, L. Barbieri, R. Bonnell, C. Bruno, A. Compagnucci, L. Dalla Vedova, T. Davinson, J. Marsh, D. Robb | University of Edinburgh, United Kingdom
- G. Ciani | Università di Bari and INFN Bari, Italy
- M. Campostrini, V. Rigato | INFN LNL, Italy

Thank you for your attention

