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A. Seryi, Unifying physics of accelerators, lasers and plasma

→ New technology allows for a jump in energy
and in applications

→ Have we reached saturation of RF technology?

→ Can we reach higher energies in shorter distance?
Next HEP machine will probably be:
• Higgs factory (center of mass>250 GeV) 
• Discovery machine with center of mass >>TeV

→ This is where plasma comes into play! 

“Livingston” plot of evolution of accelerators

Particle Accelerators 
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Plasma

What we talk about, when we talk about plasma: 
• Ionized medium (normally a gas) 

• Collisions can be (most of time) neglected 
→ Electromagnetic interaction dominates

• Large number of particles ➔ collective behavior

• Quasi-neutral (𝑛𝑝𝑒~ 𝑛𝑝𝑖)
ions (+) → npi 

electrons (-) → npe 
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• Ionized medium (normally a gas)
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→ Electromagnetic interaction dominates

• Large number of particles ➔ collective behavior

• Quasi-neutral (𝑛𝑝𝑒~ 𝑛𝑝𝑖)
→ It tends to keep the charge and current neutrality:
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→ Plasma screens electromagnetic fields 
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What we talk about, when we talk about plasma: 
• Ionized medium (normally a gas)

• Collisions can be (most of time) neglected 
→ Electromagnetic interaction dominates

• Large number of particles ➔ collective behavior

• Quasi-neutral (𝑛𝑝𝑒~ 𝑛𝑝𝑖)
→ It tends to keep the charge and current neutrality:

Plasma electrons (mpi>>mpe) move to compensate for the disturbance
→ Plasma screens electromagnetic fields 

When the equilibrium is perturbed:

• Electrons oscillate with angular frequency ω𝑝𝑒 =
𝑛𝑝𝑒𝑒2

𝑚𝑒𝜀0

• Ions with ω𝑝𝑖 =
𝑛𝑝𝑖𝑒2

𝑚𝑖𝜀0
≪ ω𝑝𝑒 (ions considered immobile for short time-scales)
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neutral plasma

+

Plasma - Space Charge Screening 
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neutral plasma

Vb ~ c

lack of electrons

(inspired by P. Muggli’s CAS lecture)

+ e-

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) with density nb<<npe 

(roughly the same for laser pulses)

1. Transverse E field expels plasma 
electrons

Plasma Wakefields Excitation
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neutral plasma

Vb ~ c

lack of electrons
excess of electrons

Linear regime: plasma electrons DO NOT cross longitudinal axis: PERTURBATION!!
Blowout (non-linear) regime: electrons DO cross the axis

(inspired by P. Muggli’s CAS lecture)

++ -- e-

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) with density nb<<npe

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind 
the bunch head 
→ restoring force

Plasma Wakefields Excitation
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neutral plasma

Vb ~ c

lack of electrons
excess of electrons

𝜆𝑝𝑒 =
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• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) with density nb<<npe

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind 
the bunch head 
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3. Oscillation of plasma e- with 𝜔pe 
→ periodic density variation

Plasma Wakefields Excitation
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• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) with density nb<<npe

(inspired by P. Muggli’s CAS lecture)

neutral plasma

Vb ~ c

lack of electrons
excess of electrons

𝜆𝑝𝑒 =
2𝜋𝑐

𝜔𝑝𝑒

Linear regime: plasma electrons DO NOT cross longitudinal axis: PERTURBATION!!
Blowout (non-linear) regime: electrons DO cross the axis

++ -- e-

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind 
the bunch head 
→ restoring force

3. Oscillation of plasma e- with 𝜔pe 
→ periodic density variation

𝜵 ∙ 𝑬 =
𝝆

𝜺𝟎

           → Wakefields 

Plasma Wakefields Excitation
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(inspired by P. Muggli’s CAS lecture)

neutral plasma

e-

Vb ~ c

𝜆𝑝𝑒 =
2𝜋𝑐

𝜔𝑝𝑒

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind 
the bunch head 
→ restoring force

3. Oscillation of plasma e- with 𝜔pe 
→ periodic density variation

𝜵 ∙ 𝑬 =
𝝆

𝜺𝟎

           → Wakefields 

Longitudinal (accelerating – decelerating) wakefields

Transverse (focusing – defocusing) wakefields 

++ --

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) with density nb<<npe

• Wake travels at driver’s velocity (no dephasing using relativistic bunches)

Plasma Wakefields Excitation
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(inspired by P. Muggli’s CAS lecture)

neutral plasma

e-
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Plasma Wakefields Excitation
• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) with density nb<<npe

• Wake travels at driver’s velocity (no dephasing using relativistic bunches)
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(inspired by P. Muggli’s CAS lecture)

neutral plasma

e-

Vb ~ c

𝜆𝑝𝑒 =
2𝜋𝑐

𝜔𝑝𝑒

1. Transverse E field expels plasma 
electrons

2. Positively charged region behind 
the bunch head 
→ restoring force

3. Oscillation of plasma e- with 𝜔pe 
→ periodic density variation

𝜵 ∙ 𝑬 =
𝝆

𝜺𝟎

           → Wakefields 

Longitudinal (accelerating – decelerating) wakefields

Transverse (focusing – defocusing) wakefields 

++ --

Plasma Wakefields Excitation

Witness bunch

• Let’s take a plasma with density npe
• Let’s take a relativistic charged bunch (e.g. e-) with density nb<<npe

• Wake travels at driver’s velocity (no dephasing using relativistic bunches)

Driver bunch



• Fields in plasmas are sustained by the charge separation
• As high as the cold wave-breaking field: 𝐸𝑊𝐵 =

𝑚𝑒 𝑐 𝜔𝑝𝑒

𝑞
→ oscillation length cannot exceed plasma wavelength

• E.g. for npe = (1014 – 1018) cm-3, 𝐸𝑊𝐵~ 100
𝑉

𝑚
𝑛𝑝𝑒[ 𝑐𝑚−3] = (1 – 100 GV /m)

14

Wave «breaks» when 
the maximum 

amplitude is reached

Accelerating Gradient
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Wave «breaks» when 
the maximum 

amplitude is reached

Accelerating Gradient

• RF cavities limited to 100MV/m by breakdown, caused 
e.g. by fatigue, pulse heating, etc..

➔ one could dream of shrinking down the size of 
accelerators by orders of magnitude



Laser Wakefield Acceleration (LWFA)
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Beam-Driven Plasma Wakefield Acceleration (PWFA)

Accelerating Gradient – Experimental Results
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Beam-Driven Plasma Wakefield Acceleration (PWFA)

Driver: high-intensity laser pulse

Driver: relativistic charged particle bunch

Momentum (GeV/c) Momentum (GeV/c)
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d
)

~ 42 GeV in 85 cm → ~50GV/m 
npe = 2.8 x 1017 cm-3

~ 8 GeV in 20 cm → ~40GV/m
npe = 3.4 x 1017 cm-3

A. J. Gonsalves et al., PRL 122, 084801 (2019)

I. Blumenfeld et al., 
Nature 455, 741-744 (2007)

Accelerating Gradient – Experimental Results
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First experimental demonstration: 1988, Argonne National Laboratory (US)
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PWFA – First Demonstration



First experimental demonstration: 1988, Argonne National Laboratory (US)

PLASMA

Energy Measurement
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PWFA – First Demonstration



First experimental demonstration: 1988, Argonne National Laboratory (US)

PLASMA

Energy Measurement
• Measurement of Witness energy as a function of delay
• Sinusoidal 

• Linear regime 
→ small gradient
→ hard to preserve beam quality

D

W

npe = 8.6 x 1012 cm-3 npe = 2.3 x 1013 cm-3
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PWFA – First Demonstration



No electrons on axis
(blowout)They cross the axis after ~𝜆pe

→ Singularity
→ Non-linearities

Requirement: 
𝑛𝑏 ≫ 𝑛𝑝𝑒

22

PWFA － Non-linear Regime
Most of PWFA’s work in the non-linear blowout regime:

• High gradient
• Linear focusing force

Plasma electrons are pushed out



No electrons on axis
(blowout)They cross the axis after ~𝜆pe

→ Singularity
→ Non-linearities

Requirement: 
𝑛𝑏 ≫ 𝑛𝑝𝑒
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Plasma electrons are pushed out

PWFA － Non-linear Regime
Most of PWFA’s work in the non-linear blowout regime:

• High gradient
• Linear focusing force

→ Main challenge: beam quality preservation (vital for applications)
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• Accelerating field not uniform along the bubble
→ Energy spread increasing upon acceleration

• Solution: “loading” the wake with the presence of the   
witness bunch itself

Uniform accelerating field within the witness bunch

Main challenge – Energy spread (longitudinal quality)

J. B. Rosenzweig et al., Phys. Rev. A 44, R6189(R) (1991)
M. Tzoufras et al., PRL 101, 145002 (2008)



➔Experimental Demonstrations: 

Flattened, loaded wake

~GV/m acceleration
Preserved relative energy spread

Combination of beam loading and initial chirp to 
obtain final small energy spread 25

Main challenge – Energy spread (longitudinal quality)



➔Ion column provides linear focusing force

Radial electric field: 𝐸𝑟 𝑟 =
𝑒𝑛𝑝𝑒

2𝜀0
𝑟 

(Gauss’ law on cylinder of ions)

26

ion column

Main challenge – Emittance Preservation (transverse quality)



➔Ion column provides linear focusing force

Radial electric field: 𝐸𝑟 𝑟 =
𝑒𝑛𝑝𝑒

2𝜀0
𝑟 

(Gauss’ law on cylinder of ions)

→ Plug it in envelope equation: 𝜎𝑟
′′ 𝑧 + 𝜎𝑟(𝑧) 𝐾 −

𝜖𝑔
2

𝜎𝑟
4 𝑧

= 0

27

ion column

=0: 
Matching condition

Main challenge – Emittance Preservation (transverse quality)

Equilibrium 
between focusing 

force and 
emittance



Too large
Too small

➔Ion column provides linear focusing force

Radial electric field: 𝐸𝑟 𝑟 =
𝑒𝑛𝑝𝑒

2𝜀0
𝑟 

(Gauss’ law on cylinder of ions)

→ Plug it  in envelope equation: 𝜎𝑟
′′ 𝑧 + 𝜎𝑟(𝑧) 𝐾 −

𝜖𝑔
2

𝜎𝑟
4 𝑧

= 0

Matching Conditions:

• 𝛽 =
𝜎2 0

𝜖𝑔
=

2𝜀0𝑚𝑒𝑐2𝛾

𝑛𝑝𝑒𝑒2  

• Injection at waist: 𝜎′ 𝑧 = 0 = 0
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ion column

Equilibrium 
between focusing 

force and 
emittance

=0: 
Matching condition

(L. Verra et al 2020 J. Phys.: Conf. Ser. 1596 012007)

Main challenge – Emittance Preservation (transverse quality)

if: beam envelope is matched to the focusing force 
(which is extremely strong!)

→ Possible emittance preservation 

else: different energy slices rotate at different rates in     
transverse phase space

 → slice emittance preserved (linear focusing)
 → projected (i.e., overall) emittance grows!



• Direct experimental demonstration:

Lindstrøm et al., 
Nature Communications 15, 6097 (2024)

• “Indirect” experimental proof:
Quality good enough for free-electron lasing

Galletti et al., PRL 129, 234801 (2022)
Pompili et al. Nature 605, 659–662 (2022)

Main challenge – Emittance Preservation (transverse quality)
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Main Challenges  

The main challenge remains:
• Do everything at the same time

Extremely high gradient
Energy spread minimization

Emittance preservation



The main challenge remains:
• Do everything at the same time
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Main Challenges  

Extremely high gradient
Energy spread minimization

Emittance preservation

• Do it many times → high repetition rate

Plasma was shown to recover at ns time-scale
R. D’Arcy et al., Nature 603, 58–62 (2022)

R. Pompili et al., Comm. Phys. 7, 241 (2024)

Still a technological challenge:
• Plasma generation
• Heat deposition

• etc..



EuPRAXIA@SPARC_LAB

Single-stage high-quality high energy gain, high repetition rate PWFA

• The most challenging application of single-stage PWFA: free-electron-laser
• High charge
• Low emittance
• Low energy spread
• High shot-to-shot reproducibility
• Tunability

• Deliver radiation in water window (2-4 nm) for users

S-band injector: 
producing driver and witness bunches ~150 MeV

X-band linac
boost to 500 MeV

Plasma module
Witness boosted to 1 GeV 

(energy doubling) 

Undulators
Witness bunch generates radiation 

through FEL process

User area



EuPRAXIA@SPARC_LAB

Single-stage high-quality high energy gain, high repetition rate PWFA

• The most challenging application of single stage PWFA: free-electron-laser
• High charge
• Low emittance
• Low energy spread
• High shot-to-shot reproducibility
• Tunability

• Deliver radiation in water window (2-4 nm) for users

S-band injector: 
producing driver and witness bunches ~150 MeV

X-band linac
boost to 500 MeV

Plasma module
Witness boosted to 1 GeV 

(energy doubling) 

Undulators
Witness bunch generates radiation 

through FEL process

User area

First beam expected end of 2029!



→ Positrons may be needed for future lepton colliders
In principle, just a 𝜋 phase difference in the wakefields

e-++ -- e++ --+
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PWFA － Positrons



e-++ -- e++ --+

Long Bunches:
Head and center lose energy 

e- e+
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PWFA － Positrons
→ Positrons may be needed for future lepton colliders

In principle, just a 𝜋 phase difference in the wakefields



e-++ -- e++ --+

Long Bunches:
Head and center lose energy 

Tail gains energy

e- e+
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PWFA － Positrons
→ Positrons may be needed for future lepton colliders

In principle, just a 𝜋 phase difference in the wakefields



→ Positrons may be needed for future lepton colliders
In principle, just a 𝜋 phase difference in the wakefields

→ Acceleration demonstrated also in the non-linear regime

Initial energy 
Maximum energy 
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PWFA － Positrons



→ BUT: In the blowout regime, e+ witness bunches need to be placed very close to the singularity

(P. Muggli, CAS 2014) 38
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→ BUT: In the blowout regime, e+ witness bunches need to be placed very close to the singularity

(P. Muggli, CAS 2014)

Exp

Sim

Plasma OFF Plasma ON

Halo due to aberrations
→ emittance growth

39

PWFA － Positrons



→ BUT: In the blowout regime, e+ witness bunches need to be placed very close to the singularity
→ Some creative solutions were proposed:

PWFA － Positrons

→ Acceleration in hollow plasma (avoiding focusing force on axis)
Gessner et al., Nat. Comm. 7, 11785 (2016)

→ But tight alignment tolerance to avoid transverse instabilities
Lindstrøm et al., PRL 120, 124802 (2018) 
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PWFA － Muons
Acceleration of muons is possible in principle, but:
• if injected with v<<c: need for a slow (non-relativistic) driver
→ dephasing upon acceleration (witness gets closer to the driver)

• Possible solution: tapered plasma density profile

C. Badiali (IST), EAAC 2023

• Initial down ramp to slow down the wake
• Constant density region after v𝜇~vd
• Up ramp region to mitigate dephasing
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PWFA － Muons
Acceleration of muons is possible in principle, but:
• if injected with v<<c, then need a slow (non-relativistic) driver
→ dephasing upon acceleration (witness gets closer to the driver)

• Possible solution: tapered plasma density profile

C. Badiali (IST), EAAC 2023
But: need a muon beam to test..



PWFA － Very high energy
• The maximum net energy gain of the witness bunch is in general limited to:

Δ𝐸 ~ 2 × 𝐸𝑑

(and for energy conservation 𝑄𝑊Δ𝐸𝑊 ≤ 𝑄𝐷Δ𝐸𝐷)

e.g: 1 GeV drive bunch drives 1 GV/m accelerating field
→ Depleted after 2m (500MV/m decelerating field)
→ Maximum energy gain of witness: 2GeV
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To reach VERY high energy (e.g. 5 TeV)

• One highly energetic driver to accelerate witness 
in a single stage (afterburner):

Assuming  energy tripling of witness bunch 
→ need a 1.7 TeV driver and witness couple 
→ CLIC-scale main linac
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PWFA － Very high energy
• The maximum net energy gain of the witness bunch is in general limited to:

Δ𝐸 ~ 2 × 𝐸𝑑

(and for energy conservation 𝑄𝑊Δ𝐸𝑊 ≤ 𝑄𝐷Δ𝐸𝐷)

e.g: 1 GeV drive bunch drives 1 GV/m accelerating field
→ Depleted after 2m (500MV/m decelerating field)
→ Maximum energy gain of witness: 2GeV

To reach VERY high energy (e.g. 5 TeV)

• One highly energetic driver to accelerate witness 
in a single stage (afterburner):

Assuming  energy tripling of witness bunch 
→ need a 1.7 TeV driver and witness couple 
→ CLIC-scale main linac

PWFA

Many low-energy (cheaper) drivers in multiple stages
Using e.g. 30 GeV drive bunches (requiring a > 300 m-long linac)
→ ΔE < 60 GeV (R<2 for single symmetric driver)
→ Need > 83 stages

J. Rosenzweig et al., NIM A 410 
(1998) 532—543 



PWFA － Staging
• The most outstanding challenge in PWFA:

J. Rosenzweig et al., NIM A 410 (1998) 532—543 

In each of them:
• Inject the driver bunch
• Inject and match the witness bunch with appropriate beam loading
• Accelerated with high gradient and high net energy gain
• Extract (i.e., reduce divergence)
• Dispose of spent driver
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From HALHF design
Foster et al 2023 New J. Phys. 25 093037

→ Repeat as many time as needed to reach the target energy
→ Preserve the beam quality all along
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PWFA － Staging
• The most outstanding challenge in PWFA:

In each of them:
• Inject the driver bunch
• Inject and match the witness bunch with appropriate beam loading
• Accelerated with high gradient and high net energy gain
• Extract (i.e., reduce divergence)
• Dispose of spent driver

From HALHF design
Foster et al 2023 New J. Phys. 25 093037

→ Repeat as many time as needed to reach the target energy
→ Preserve the beam quality all along

SPARC_LAB and EuPRAXIA could play a major role on this topic!

Basically, repeating EuPRAXIA n times..



PWFA － Avoiding staging
• Alternative: single long stage with extremely energetic driver:
→ Proton bunches from synchrotrons 

• Available proton bunches carry large amounts of energy:
• CERN SPS proton bunch: 3⋅1011 p+ at 400 GeV/c → 19.2 kJ
• CERN LHC proton bunch: 1⋅1011 p+ at 7 TeV/c → 112 kJ
• SLAC FFTB electron bunch: 7⋅109 e- at 40 GeV/c → 40 J

⇒ Drive wakefields over very long distance!
no need for staging

Witness bunch energy 
along the plasma

Parameters:
single proton bunch
𝜎z = 100 μm, 
E = 1 TeV, 
population: 1⋅1011 particles per bunch 

(16nC)

A. Caldwell et al., Nature Phys. 5, 363–367 (2009)



PWFA － Avoiding staging
• Alternative: single long stage with extremely energetic driver:
→ Proton bunches from synchrotrons 

→ Acceleration of electrons demonstrated at AWAKE 
(using 400 GeV p+ from SPS and 10-m-long plasma source)

→ But: rely on beam-plasma instability to drive large amplitude wakefields

From 20 MeV to 2 GeV in 10 m
→ ~200 MV/m

AWAKE Coll., Nature 561, 363–367 (2018)



PWFA － Avoiding staging
• Alternative: single long stage with extremely energetic driver:
→ Proton bunches from synchrotrons 

→ Acceleration of electrons demonstrated at AWAKE 
(using 400 GeV p+ from SPS and 10-m-long plasma source)

→ But: rely on beam-plasma instability to drive large amplitude wakefields

→ Difficult to achieve collider-quality beams

→ Applications for fixed target experiments From 20 MeV to 2 GeV in 10 m
→ ~200 MV/m

AWAKE Coll., Nature 561, 363–367 (2018)

L. Verra et al. (AWAKE Collaboration) Phys. Rev. Lett. 129, 024802 (2022) 

Bunch converted into train 
of microbunches



Applications to Particle Physics

• Need to reach high center-of-mass energy (100’s GeV or multi-TeV)
(relevant for the target application/process to investigate)

• Beam Species → impact on the physics and on the statistics

55

K. Langhoff, ALEGRO Workshop 2025

e+e-
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• Beam Species → impact on the physics and on the statistics
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K. Langhoff, ALEGRO Workshop 2025

e+e- e-e-



Applications to Particle Physics

• Center-of-mass energy
(relevant for the target application/process to investigate)

• Beam Species→ impact on the physics and on the statistics

• Luminosity
(gathering enough data in reasonable amount of time):

57

ℒ =
𝑁2𝑛𝑏𝑓𝑟𝑒𝑝

4𝜋𝜎𝑥𝜎𝑦
⋅ 𝐹

charge
Rep rate

Transverse size

Which reads:
• High charge (~nC)
• High rep rate (~kHz)
• Extremely high quality 

(~nm normalized emittance) 



Applications to Particle Physics

ℒ

𝑃𝑡𝑜𝑡
=

𝜂𝑁

4𝜋𝜎𝑥𝜎𝑦𝐸𝑏

• Center-of-mass energy
(relevant for the target application/process to investigate)

• Beam Species→ impact on the physics and on the statistics

• Luminosity
(gathering enough data in reasonable amount of time):

• Luminosity per power
• Better metrics to quantify the luminosity one can “buy”

Efficiency: 
• Wall-plug → Drive beam (Klystrons, etc..)

~55% (CLIC)
M. Aicheler et al., CLIC CDR (2012)

• Drive Beam → Plasma 
~60% with Gaussian bunch
F. Peña et al., Phys. Rev. Res. 6, 043090 (2024)

• Plasma →Witness
~22% preserving quality
Lindstrøm et al., Nat. Comm. 15, 6097 (2024)

Bunch energy

Which reads:
• High quality
• High efficiency



Applications to Particle Physics

ℒ

𝑃𝑡𝑜𝑡
=

𝜂𝑁

4𝜋𝜎𝑥𝜎𝑦𝐸𝑏

• Center-of-mass energy
(relevant for the target application/process to investigate)

• Beam Species→ impact on the physics and on the statistics

• Luminosity
(gathering enough data in reasonable amount of time):

• Luminosity per power
• Better metrics to quantify the luminosity one can “buy”

Which reads:
• High quality
• High efficiency
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Recent Proposals – HALHF

Cost estimation, to be compared with:

• FCC-ee (~20B€)
• ILC-CLIC (~7-12B€)

arXiv:2503.19880

https://arxiv.org/abs/2503.19880


Recent Proposals – 10 TeV Wakefield Design Study
• Response to 2023 Snowmass P5 Report 

(analogue to ESPP in USA)

•
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Recent Proposals – 10 TeV Wakefield Design Study
• Response to 2023 Snowmass P5 Report 

(analogue to ESPP in USA)

• “Discovery machine” at 10 TeV c.o.m. competitive with 
other technologies

• Goal: present an end-to-end design concept with 
consistent parameters

• Evaluating the best acceleration technique and 
investigating new aspects as:
• beam-beam interaction
→ e.g. flat or round beams?

• environmental impact
• Beam delivery system
• STAGING
• Full-program cost → is it really competitive?

Contributions in any of these areas are welcome!



Recent Proposals – 10 TeV Wakefield Design Study
• Response to 2023 Snowmass P5 Report 

(analogue to ESPP in USA)

• “Discovery machine” at 10 TeV c.o.m. competitive with 
other technologies

• Goal: present an end-to-end design concept with 
consistent parameters

• Evaluating the best acceleration technique and 
investigating new aspects as:
• beam-beam interaction
→ e.g. flat or round beams?

• environmental impact
• Beam delivery system
• STAGING
• Full-program cost → is it really competitive?

• Submitted a contribution to ESPP Update

https://arxiv.org/abs/2503.20214

10TeV WFA indico page: 
https://indico.slac.stanford.edu/category/138/

Advertised by Nature: 
https://www.nature.com/articles/d41586-025-01181-1

https://arxiv.org/abs/2503.20214
https://indico.slac.stanford.edu/category/138/
https://www.nature.com/articles/d41586-025-01181-1
https://www.nature.com/articles/d41586-025-01181-1
https://www.nature.com/articles/d41586-025-01181-1
https://www.nature.com/articles/d41586-025-01181-1
https://www.nature.com/articles/d41586-025-01181-1
https://www.nature.com/articles/d41586-025-01181-1
https://www.nature.com/articles/d41586-025-01181-1


Recent Proposals – 10 TeV Wakefield Design Study
• Starting working on the “details” to design a real machine:

e.g. energy loss due to synchrotron radiation in chicanes between each stage
→ Reducing the effective gradient (energy / full length of the linac)
→ Length of optics increases with energy 

x

x PWFAPWFA

period

Optics: 𝐿𝑂 ∝ 𝛾

Length at first stage

→ Lower B field for longer optics
→ 𝑊𝑒𝑓𝑓 quickly goes <0.5GV/m if length of optics 

is increased

5 GV/m in plasma



Summary

• Plasma Wakefield Acceleration is a vibrant research field

• Long promised revolutionary applications

• Time to deliver!
• Single-stage: FEL (EuPRAXIA)
• Multi-stage: fixed target, SFQED, colliders
• Lots of physics to investigate along the way



ALEGRO Workshop 2026 

• The ALEGRO (Advanced LinEar collider study GROup) Workshop gathers the 
advanced and novel accelerator community and reflects the global ambition 
towards ultra-high energy colliders driven by wakefield acceleration technology, 
while also seeking engagement from HEP Theorists and Experimentalists.

• We will host the next iteration at LNF in 2026!
https://agenda.infn.it/event/47329/

• Presentations and discussions on:
• Beam Physics
• Collider Physics Case
• Other applications
• etc..

• You are all invited!

https://agenda.infn.it/event/47329/


Thank you for listening!



Backup Slides



List of not mentioned issues

Instabilities
Jitter
Tolerances
Rep rate
Heat resistance plasma sources (plasma generation + beam power deposition)



• When the electric field of the bunch is strong enough to expel ALL plasma electrons
→ BUBBLE of plasma electrons around a column of pure ions

e-

nbEz

W⊥

𝑘𝑝𝜉

Requirement: 
𝑛𝑏 ≫ 𝑛𝑝𝑒

75

Along 𝜉:
• Periodic ’’Steepened’’ accelerating field
• Uniform focusing field 

PWFA － Non-linear Regime



• When the electric field of the bunch is strong enough to expel ALL plasma electrons
→ BUBBLE of plasma electrons around a column of pure ions

e-

nbEz

W⊥

Along 𝜉:
• Periodic ’’Steepened’’ accelerating field
• Uniform focusing field 

𝑘𝑝𝜉𝑘𝑝𝑟

Ez

W⊥

Along 𝑟 (behind the bunch):
• Uniform accelerating field ➔ uniform acceleration
• Linear focusing force ➔ possible emittance preservation

Requirement: 
𝑛𝑏 ≫ 𝑛𝑝𝑒

76

PWFA － Non-linear Regime



➔ BEAM LOADING: 
       The presence of the witness bunch affects the wakefields

Non-linear regime

The bubble closes later
(P. Muggli, CAS 2014)

Linear regime

The point is: compromise on accelerating gradient ➔ smaller energy spread → beam quality 77

PWFA － Beam Loading



➔ BEAM LOADING: 
       The presence of the witness bunch affects the wakefields

Linear regime

• Triangular/trapezoidal  shape gives constant field

• Short Gaussian placed at the right phase can work 78

(P. Muggli, CAS 2014)

II. Non-linear Regime – Beam Loading 



79

0b. Beam Physics

• Relativistic particle bunches:
• Propagate at vb~c
• Not affected by index of refraction
• Large inertia (𝛾m >> m)

https://arxiv.org/pdf/2007.04102.pdf

https://arxiv.org/pdf/2007.04102.pdf
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0b. Beam Physics

• Relativistic particle bunches:
• Propagate at vb~c
• Not affected by index of refraction
• Large inertia (𝛾m >> m)

• In Lab frame, space-charge electric field is almost purely 
transverse:

Rest frame Lab frame

𝐸0 =
1

4𝜋𝜀0
−

𝑒

𝑟2

Ԧ𝑟

𝑟
𝐸∥

′ = 𝐸0

𝐸⊥
′ = 𝛾𝐸0

𝜗~
1

𝛾

https://arxiv.org/pdf/2007.04102.pdf

https://arxiv.org/pdf/2007.04102.pdf
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0b. Beam Physics

• Relativistic particle bunches:
• Propagate at vb~c
• Not affected by index of refraction
• Large inertia (𝛾m >> m)

• In Lab frame, space-charge electric field is almost purely 
transverse:
• Effectively sets in motion the plasma electrons

• Propagation of the beam distribution is dominated
by the emittance (at high energies)

𝜎′′ =
𝜖𝑟𝑚𝑠

2

𝜎3

𝜎 𝑧 = 𝜎0 + 𝜎0
′ 𝑧 − 𝑧0

2
+

𝜖𝑟𝑚𝑠
2

𝜎0
3 𝑧 − 𝑧0

2.

Rest frame Lab frame

𝐸0 =
1

4𝜋𝜀0
−

𝑒

𝑟2

Ԧ𝑟

𝑟
𝐸∥

′ = 𝐸0

𝐸⊥
′ = 𝛾𝐸0

𝜗~
1

𝛾



EuPRAXIA@SPARC_LAB 
Start to End Simulation ResultsElectron Beam 

Parameter
Unit PWFA

Full
 X-band

Electron Energy GeV 1-1.2 1.2

Bunch Charge pC 30 - 50 200-500

Peak Current kA ~ 2.2 1-2

RMS Energy 
Spread

% < 1 0.1

RMS Bunch Length 𝜇m 3-6 24-20

RMS norm. 
Emittance

𝜇m 0.7 – 1.2 1

Slice Energy 
Spread

% ≤0.05 ≤0.05

Slice norm 
Emittance

mm-mrad 0.5 – 0.8 0.5

Energy jitter % < 1 0.1

• Bold values indicate the main working point 

Radiation 
Parameter

Unit PWFA Full
X-band

Wavelength nm 3-5 4

Pulse length 
(fwhm)

fs 10.0 -

Photons per 
Pulse

× 1012 0.1- 0.25 1

Photon 
Bandwidth

% 0.1 0.5

Undulator Area 
Length

m 26

𝜌(1D/3D) × 10−3 1 1

Photon 
Brilliance per 
shot

𝑠 𝑚𝑚2𝑚𝑟𝑎𝑑2

𝑏𝑤 0.1%
1−𝟐 ×

𝟏𝟎𝟐𝟖
1 × 1027



Scientific Case and Applications  Application Area Scientific Focus Techniques Key Impact

Renewable Energy • Charge transport in solar cells & 
catalysts
• Photocatalytic H₂ production
• PFAS/PClAS analysis

XAS, XES, PI-MS • Efficient solar materials
• Clean hydrogen production
• Environmental remediation

Warm Dense Matter 
(WDM)

• Extreme temperature/density
• Astrophysics & fusion

Time-resolved 
XAS, TR-XES

• Stellar/planetary modeling
• Fusion research support

Battery Technology • Ion migration & interfaces
• Solid-state battery study

XAS, non-linear 
X-ray 
spectroscopy

• Safer, longer-life batteries
• High energy density

Structural Biology • Live-cell imaging
• Cellular processes (stress, DNA 
damage)

CDI, XAS, CEI • Real-time biomolecular studies
• Disease mechanism insight

Health & 
Radiobiology

• DNA damage by radiation X-ray pump–
probe, photo-
fragmentation

• Radioprotection
• Cancer treatment 
improvement

Atmospheric 
Chemistry

• VOC/NOx oxidation
• Aerosol dynamics

PI-MS, ion 
spectroscopy

• Pollution models
• Climate studies

Astrochemistry • Radiation chemistry in space
• Organic molecule formation

XAS, 
photochemistry

• Space molecular evolution

Courtesy F. Stellato



Machine Layout 

Courtesy M. Del Franco
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