Axion Physics Overview

LNGS 21/03/2025 LNGS 21/03/2025

Axion Physics Overview

- 1. Strong CP problem & DCD axions
- 2. Axion properties
- 3. Axion DT from misslighment
- 4. Wave DM detection concepts
- 1. Strong CP problem & OCD axious

- · P and T violating (of via CPT therrem)
- · allowed by gange inversance
- · total derivative -> physical significance due to the non-pertuchative vaccoum structure of gauge theores

vacuum states of dyn = -166 mix

eigenstate of the under time evolvior due to the

than: (tonian existence of instrution contigurations

9 -> (sbels the ground state of the theory markelection rule.

In QCD things are slightly more involved sine to purch masses:
·
Lacs = - [mg e i g, q, + h.c.
physical observable:
9 = 0 + I og -> invariant under g -> cidts g
= 8 4 erg but Mg
= 9 + 1rg det Yu Yo
-> contribution to WEDT non-celative limit
needs a plan become EDR Imaginary
d = - dy = i ch rs h tou -> Fl = - dy E.S needs > plan becanh EDR Imaginary a > (1 - c mg e) e i ch rs h Fru 2 mg mg mg mg mg mg mg mg mg mg
$\frac{1}{100} = \frac{1}{100} = \frac{1}$
10° 1 e GeV -1
du < 10 2. cm => 0 5 10 (mang CP problem

78 mechanism -> new spin-0 boson with phund-shift symmetry; a -> a + & to broken only by a speciation operator similar to o term ; 2 2 95 66 fo 31 82 choose d= - 9 to sense 9. Need to make mre that (a) = 0 -> mired by Vafa - Vitter theoplan. 1. Axion Lottragord Some axion properties can be derived at the ERT level, without any returna to UV completion

axion couplings to JM gax ~ 1
-> fo = no 8÷3 GeV from astrophysics
Compton were-langht;
$\lambda_{o} = \frac{11 \text{ t}}{m_{o} c} \sim 1 \text{ noter} \left(\frac{10^{\circ} \text{ eV}}{m_{o}}\right)$
$\int w c^{1} = h v = h \frac{c}{h} - y \qquad \frac{\lambda}{h} = \frac{h}{mc} = \frac{2\pi t_{1}}{mc}$
General properties of strong;
· vezkly - conpled
· light (sub-eV)
· macros copic werelings t
From an experimental point of view a crucial
compling for detection is the one to phonons
le 3 -1 908 0 FT
contribution contribution
I due to a 6
$900 = \frac{d}{d\pi} \left[\frac{E}{N} - 1.32(4) \right]$
Cox

γ. μχ.ος ωτ
Is the exton long-(red mongh to be DR ?
a -> XX kinenztically open
$\frac{7}{64 \pi} = \frac{90 r m_0}{64 \pi} \sim \frac{1}{100} \left(\frac{m_0}{100}\right)^{5}$
1/posor so ~ no s stable on Garabai
145-eV ST 3x1245 count be produced thermally
viz scatterings off STR particles ((ike for WIRPs)
because they would be relativistic at the time of the CMO
Axion DR production proceeds viz use-thermal mechanisms (Known as misslignment)
To be more general let us consider à realer field ϕ $ 2 $
$R = \frac{1}{2}(2p) - \frac{1}{2} m p p + \alpha_{\pm} $ or solf-intersells.
disone the universe undervient a person of inflation
H = 2 >> ML p

after inflation the field is approximately spatially uniform

and the initial state is charachterized by the field value of:
After inflation & priod of reheating occurs, following a period of vadiation domination
$9 + 1^{1/2}$ $H = \frac{9}{9} = \frac{1}{11}$
$\widetilde{coll}: \hat{\phi} + 3H \hat{\phi} + m^2 \hat{\phi} = 0$
in gueral up = mp (t) sue to dx
solution can be separated in two regimes s
- 3H >> mf : \$ is an overdomped oscillator \$ = \$.
- to: 34(to) = np(to) = mo the dumping becames under critical and the field starts to oscillaten
Who approximation (fast ascillation, slow amplitude)
$\phi \approx \phi_{1} \left(\frac{m_{1} o_{1}}{m_{1} o_{2}} \right)^{1/2} c_{0} \left(\int_{t_{1}}^{t} m_{1} \delta t \right)$
\mathcal{A} $\alpha(t)$
with \$1 = \$;
the energy density of the scalar field is

Here, we define: $N = \frac{\rho a^3}{m_A} = \frac{1}{\epsilon} \phi_n m_A a_A$ -> N (Growing humber of quants) is outlent in time To compute energy density token, we just need to $\beta \phi_{,0} = m_0 \frac{N}{q_0} = \frac{1}{2} m_0 m_A \phi_1^{2} \left(\frac{Q_1}{Q_0} \right)$ · switch from t ex T ; H = 1.66 Ng (T) I (rod. dom.) · with py conservation : S = s a = 22 gs CT) T a $= \lambda \qquad \left(\frac{o_1}{g}\right)^2 = \frac{g_1(T)}{g_1(T_1)} \frac{T^2}{t_1^2}$ $\frac{m_0}{\text{eV}} \sqrt{\frac{m_0}{m_0}} \left(\frac{dn}{dn} \right) \frac{1}{10} (T_0)$ dumping of oxillations PDR = 1.17(6) in the RCD onion cen: mo & 1/4, m1 = (Tc) \$=4 $\frac{\text{Noh}^{2} \simeq 0.12 \left(\frac{21 \text{ pol}}{\text{me}}\right)^{\frac{1}{2}} \theta_{-}^{2} \simeq 0.12 \left(\frac{f_{0}}{1.10^{21} \text{ GeV}}\right)^{\frac{1}{2}}}{1.10^{21} \text{ GeV}}$ Pe/pe 9: = 41/fa

of the time of their production particles them
misalignment are semi-relativistic
P ~ H1 (5 T1 H = 1.66 g 1 T · (I)
m, v, ~ H, => v, ~ H, ~ o(1)
occidingly we have a velocity distribution with a very narrow whath today
$\delta V(t) \sim V_1 \underbrace{e_1}_{Q_0} \sim \underbrace{H_1}_{Q_0} \underbrace{e_1}_{Q_0} < c$
confined with a high mumber density of particles
$N_{d,o} = \frac{N}{a}$ = $\frac{P_{DR}}{m_o}$ this warrow distribution
leads to high occupation wombers for each quentur
state
State h N_{occ} $\sim \frac{dN}{d^3r}$ $(2\pi t_1)$ $(5)^{2n}$ $(5)^{2n}$ $(5)^{2n}$ $(5)^{2n}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
-> huge occupation number behaves like a classical

4. Have DM detection concepts DT density in the solar neighborhood pop ~ D. a God/cm2 de Broglie werelenght: 11te of duarf galaxies 10 = 12 t = 0.5 kpc (10 12 V) (150 km/s) = 1.5 km (10° eV) (250 km/s) V = 10 c -> velocity dispersion of DT in the gold dichalo Volume occupied by each DT state $\sqrt{40} = \sqrt{18} = \left(\frac{m_1 \sigma}{m_1 \sigma}\right)$ # of Itakes in a db volume $N_{48} = n \cdot V_{48} = \frac{m_{4}^{4} v_{3}}{m_{4}^{4} v_{3}} \simeq \left(\frac{m_{4}}{34 v_{4}}\right)$ n = par/mb wave-particle transition of DM was the Earth mg ~ 20 eV -> needs guentum detectors ? For up << 30 eV DR states begin to overlap to that the collective description of DT is a classical wave is

more appropriate.

Main features of vave DN:
i) Inch DM is necessarily bosonic
-> Paul: exclusion principle precludes multiple occupancies
for formions (my 2 8.1 keV)
ni) we cannot rely on a detection technique bould on energy deposition
ini) we leverage the large number density of the field
and look fir the also ciated coherent effects
-> enalogy with detecting wind in the human context:
better to have a windmill rather than lasking sit the
(catering of the single wind's molecules.
How the "classical" DR field behave in the Galaxy ?
DP field seeds the growth of structures in the univers
leading to Galaxy formation.
przetically impossible to calculate the exact classical field
today even if we are given some initial conditions due
to complexity of structure formation.
-s simply regard the classical field being random.
Still we know some peneral properties;

Cold DM -> non-relativistic
\$: oscillating scalar xxald with oscillation occurring at E= mp (non-relativistic)
\$(t) ~ \$0 cos (mf t)
and amplitude fixed by everage DT density
$\int_{\partial R} \sim \frac{1}{2} m_{\phi} \phi^{2} \implies \phi_{0} \sim \sqrt{\frac{1 \int_{\partial R}}{m_{\phi}^{2}}}$
so far, we ignored the spatial profile of the field
the field will have random non-honogenesties.
although rendem, we can still define a correlation length:
given the value $\phi(\vec{x})$ at the point \vec{x} , how far we
given the value $\phi(\vec{x})$ at the point \vec{x} , how far we need to go before the field value is $O(1)$ different?
- & think about the problem in Fourier space:
to the field possessing momenture.
to the field possessing momenture.
Thus, the distance we need to travel before the field value
is D(n) different is given by a dB were lengtht

186 ~ 1/mv	with	v ~ 10 ⁻³	(virial ve	6 cety
			of Dh in	the Gelesy
no metter what the	n scale	of the DT to	is in the	لا بداد م
-8 1 Sharter corr larger velocity not be gravitat	· longht and the sonally bo	would co ose particl und to the	c would eve Galaxy.	entually
-> Experiments ce coherent effects	of the	vised to	meshre the	
time of the field	we 21	to csir	about the	co he retice
how long can an measure the value changes by O(1)	experiment of the	nt jit d Pield	t a posit before this	and
Relative relocity of ex				
Mainly due to Jupe velocis				
o × (o, no,) +	(10, 1), }) 4 km/s	
direction of dish	מפודגונים	3 of 15 of 25 of	distil North pe	»ار
	0.20	con con		

+	aun ust	ر) سه ځې (ک	tion due	40	Farth	rotation	1	
ma	x (mile	10 (1	l wind	04	Time	2 ^{ud} (Dec	249)
) mex Hu Gala		ty comp	omnt.	toward	J
			~ \\ \	•	~	m v²		, ,
			° 10					
					-9 sec (10-6 eV		
					CH+			
tine	oitsinsu	n of	\$ et	۷	fixed	location	x	
ф	\uparrow		Toh			-		
		7	Osc.	V				
		-			>	t		
						•		

Take for instance a particle with my ~ 64x (10 eV)
-b oscillating field at GHz frequency which remains coherent for 1/2 ~ 100 periods -b 1 msec.
respond to the frequencies and we are able to acquire signals for ~ 1 mkc.
instead of trying to detect the (infinitesimal) energy deposited by a lingle particle, try to detect them oscillating fields, which oscillate at the unknown frequency 1/mp with a coherence time ~ 1 ~ 106.
the fact that the socillations of the field are wherent for 10° periods implies that one can conceive resonant schemes that will boost the DM signal
Possible interactions with feely interacting particles: ### ### ### ### ####################
modulition of nucleur decays
replace of - o ocos (mot - mov x)

EON of electrodynamics => possibility of resonance
since DR field oscillates at a frequency up with
2 width ~ 156 mp
Masin ascentage of this kind of DR kareles:
the signal is narrow and persistent
-b for a persistent signal one can tune away to another frequency and see if the signal is persistent.
another frequency and see if the signal is persistent.
This fact distinguishes the search for oscillating ultre-light The from conventional WIPP searches, since the latter
It from conventional WITTP searches, since the letter
need to combat backgrounds over a wide range of frequenci
as their signal is truly DC.
<u> </u>