

Bending and assembly of the L0 and L1 layers

<u>SVT Bari team</u> D. Elia, M.T. Camerlingo, S. Martiradonna, C. Pastore, V. Valentino, Triloki, D. Colella

- 1. SVT-L0 half-layer attempt n. 4
- 2. SVT-L0 half-layer summary table
- 3. Next steps
- 4. Prototyping campaign and material procurement

Attempts #	Conditions	Dates	Success	Notes
1	2 half-moon shaped L0 3D printed longerons and half-rings mandrel produced on our workshop	25/11/2024 - 26/11/2024	NO	Breakage of the second silicon piece during the bending
2	2 half-moon shaped L0 3D printed half-rings and plexiglass longerons mandrel produced on our workshop	13/01/2025 - 31/01/2025	YES	
3	2 half-moon shaped L0 3D printed half-rings and plexiglass longerons mandrel produced on our workshop	24/03/2025 - 28/03/2025	NO	One silicon piece already broken from the transport box
4	2 half-moon shaped L0 3D printed half-rings and plexiglass longerons mandrel produced on our workshop	03/04/2025 - 10/04/2025	YES	

Recent progresses SVT-L0 half-layer attempts summary

Next steps

- SVT-L1 half-layer
- (If previous step successful) SVT-L0L1 half-barrel
- Few small features to be added to the handling and gluing tools
 - Better vacuum on movable tower
 - Better longerons handling during gluing
 - Sensor pitch measurement improvement and automatization

Prototyping campaign vs Material procurement

	Prototype		Components	Goal			_		
<u>2025</u>	IBL01_P1 (half-layer)	•	2 naked silicon L1 sensors L1 local support structure (3-D printed) outer support shell (machined in PEEK)	 finalize half-lay assembly proc 	rer edure	They require dummy silicon sensors from DISCO; to validate 2-sensor connection and		L0/L1 Silicon pieces	
MAR	IBL01_P2 (half-barrel)		IBL01_P1 + 2 naked silicon L0 sensors L0 local support structure (3-D printed)	 finalize half-baa assembly proce 	rrel edure	bending, to design local support structure, external shell etc		Outer shell ??	
2025	IBL01_P3 (half-layer)		2 naked silicon L1 sensors L1 local support structure (carbon foam) outer support shell (carbon fiber, to be defined)	thermal chamb	er test	In addition to DISCO dummies, they require:	LO/L1 Silicon		
<u>JUL</u>	IBL01_P4 (half-barrel)	• • •	IBL01_P3 + 2 naked silicon L0 sensors L0 local support structure (carbon foam)	thermal chamb	er test	 carbon foam local support (procurement and machining TBD) carbon fiber outer support shell TBD 		Outer shell carbon fibre	
IBL01_P5 (half-barrel)	IBI 01 P5	• • •	2+2 silicon L0+L1 sensors with heaters from CERN L0+L1 local support structures (carbon foam) outer support shell (carbon fiber, to be defined)			(if yes, needs for design&simulation, procurement and machining)	L0/L1 heaters	L0/L1 heaters	
	(half-barrel)	• wind tunnel test				SS carbon foam			
8		•	PT1000 sensors (to be glued on heater surface)		IBL01_	1_P5 requires:		Outer shell carbon fibre	
					 air-o Poss proto trans 	cooling mechanism verification sible preliminary FPC (mechanical) otype to check volumes, transport etc) sport issues to wind tunnel facility			

Prototype	Components	Goal	Date	
IBL012_P6/7	 2+2+4 ER2 pad wafer L0+L1+L2 sensors (x 2 HB?) L0+L1+L2 local support structures gloabal support mechanics (advanced design) FPCs (advanced design) air distribution inlet & outlet (advanced design) 	 first complete IB HB prototype w/o sensors including test of wirebonding to FPCs final test on HB support mechanics possibly built 2 complete HBs (to allow HB mechanical support matching test) 	2026/07]_
IBL012_P8	 2+2+4 ER2 wafer L0+L1+L2 sensors L0+L1+L2 local support structures mechanics, FPCs, cooling (~final/advanced design) 	 complete IB HB prototype w/ sensors qualification model w/ bent sensors for cooling + powering/DAQ/DCS finalisation 	2026/10]—

 L0/L1 pad sensors SS carbon foam
 Outer shell carbon fibre
 L0/L1 ER2 sensors
 SS carbon foam
 Outer shell carbon fibre

Prototyping campaign vs Material procurement

Silicon sensors/pieces:

Silicon pieces	4 L0 - 4 L1	AVAILABLE No spares	
Heaters	2 L0 - 2 L1	Production completed: 4 L0 - 4 L1 Partially to be called from CERN	
Pad sensors	[2 L0 - 2 L1 - (4 L2)] x 2	If two half-barrels (16 pad sensors = 16 wafers) \rightarrow no spares	
ER2 sensors	2 L0 - 2 L1 - (4 L2)	Only one half-barrel No spares	

Support structures:

3D printed	Mixing printed and manufactured in very first exercises
Carbon fibre/foam	Material for components - Half-ring on LEC: Allcomp K9 (standard density, 200-260 kg/m ³) - Longerons and half-ring on REC: Carbon RVC Duocel (density 45 kg/m ³ , PPI 100) - Outer shell: carbon fibre → Type of carbon fibre to be defined (Padova) Foam procurement - Allcomp K9 → Not easy to procure from Europe, ask colleagues in USA - Carbon RVC Duocel → Company in USA, but possible purchasing from Europe Foam shaping - Collecting procedure details from CERN colleagues - Genova INFN → First contact, under exploration - Berkley (Nikki) or U.K. (George) → Expressed availability - Local workshop → To be found and require material for attempts Carbon fibre production - Producer to be identified (Padova)

BACKUP

New sensor handling tools and support structure gluing tools

Adhesive tape vacuum

Required to:

- Precisely align and join the two sensors
- Handle the joint sensors during the bending procedure to approach the mandrel
- New tool for support structures gluing

Crack stopped during bending procedures using microscope (not easily visible by eye).

Broken silicon pipe found in the same box

- Don't stack many silicons in the same box
- Visual inspection before each assembly

Fancy patchwork to finalize the exercise of verification of support structure gluing tools

Support structures gluing tool

Tools under refinement after successful gluing. Mainly improving pressing components for longerons to the sensors.

Sensors alignment and handling tools

Required to:

- Precisely align and join the two sensors
- Handle the joint sensors during the bending procedure to approach the mandrel

regions with separate

vacuum