

The DELight Experiment

Overview and Perspectives

20th Patras Workshop on Axions, WIMPs and WISPs September 26, 2025

Anna Bertolini
Heidelberg University
on behalf of the DELight Collaboration

The Collaboration

- Three institutions in Germany
- Designing future Direct search Experiment for LIGHT dark matter

Goal of the DELight Experiment

- Goal: probe Light Dark Matter
 → DM-nucleon interaction
- Use superfluid ⁴He as target material
- No Low-Energy-Excess expected in the liquid
- Light nuclei → ideal for LDM search

Superfluid ⁴He as Target Material

- No intrinsic long-lived backgrounds
- Contaminants freeze-out
- Scalable
- **IR** Multiple signals photons **Excimer LDM** prompt UV (He¸** photons **Singlet** Ionization He t~ns He₂* **Triplets Triplet** (non-prompt UV) He Quasiparticles (phonons and rotons)

Superfluid ⁴He as Target Material

- No intrinsic long-lived backgrounds
- Contaminants freeze-out
- Scalable
- Multiple signals
 - → potential ER/NR discrimination

prompt UV photons

Triplets (non-prompt UV)

Quasiparticles (phonons and rotons)

- Cell filled partially (1-10 liters) with superfluid ⁴He @20 mK
- Calorimeters (sensor arrays) positioned in liquid and in vacuum
 - → measure energy of scintillation and quasiparticles

- Singlet → UV photons
- First excited state in ⁴He at ~20eV
 - → Liquid transparent to UV photons
- Detection in both sensor arrays

- Singlet → UV photons
- First excited state in ⁴He at ~20eV

 → Liquid transparent to UV
 photons
- Detection in both sensor arrays

- Triplets lifetime→ 13s
- De-excite when reaching a surface
- UV photos delayed at calorimeter

- Singlet → UV photons
- First excited state in ⁴He at ~20eV
 → Liquid transparent to UV
 photons
- Detection in both sensor arrays

Phonons/Rotons

- Triplets lifetime → 13s
 - De-excite when reaching a surface
- UV photos delayed at calorimeter

- Quasiparticles propagate ballistically
- Evaporate He atoms at liquid surface
 - → quantum evaporation

Quantum Evaporation

- Released He atoms condense on the sensor in vacuum
- Adsorption energy onto sapphire wafer ~20x binding energy
 → effective signal amplification
- Sensor in vacuum must be free from He film → Film burner

Calorimeters: LAMCALs

- Large Area cryogenic Micro-CALorimeter
- Sapphire-wafer as absorber
- Expected baseline resolution ~1eV

MMC

Temperature variation measured as a change in magnetization

Current Status - Demonstrator

- R&D cell in operation in Heidelberg
- Cell filled with liquid helium @15 mK, level meter in function
- Equipped with MMC and heater

First Experimental Site

DElight

- Shallow underground lab
 - → 230 m rock overburden
- Located in Switzerland
- Hosts GeMSE gamma spectrometer for material screening

Vue-des-Alpes

Simulations

- Preliminary geometry implemented in Geant4
- Signal simulation (including quasiparticles) + waveform simulation
- Full background model (Vue-des-Alpes as experimental site)

Sensitivity Projections

Background model used for sensitivity projections

Phase-I 1 kg·d exposure

Summary and Outlook

- DELight is in its design phase
 - → currently operating demonstrator
- First measurement will be at VdA
 - Phase-I: 20 eV threshold and
 1 kg·d exposure
 - Phase-II: 10 eV thresholds and 100 kg·d exposure
- Long range plan:
 - deep underground laboratory
 - 200 L of liquid helium
 - threshold <10 eV and kg·year exposure

Summary and Outlook

- DELight is in its design phase
 - → currently operating demonstrator
- First measurement will be at VdA
 - Phase-I: 20 eV threshold and
 1 kg·d exposure
 - Phase-II: 10 eV thresholds and 100 kg·d exposure
- Long range plan:
 - deep underground laboratory
 - 200 L of liquid helium
 - threshold <10 eV and kg·year exposure

Backup

Film Burner

- Additional structure close to the helium cell
- Needed against superfluid helium moving up to upper calorimeters
- Already tested by HERON collaboration