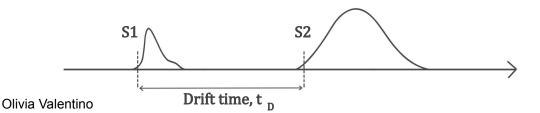
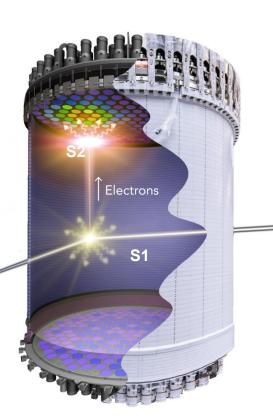
Electron capture decays in the LUX-ZEPLIN (LZ) experiment

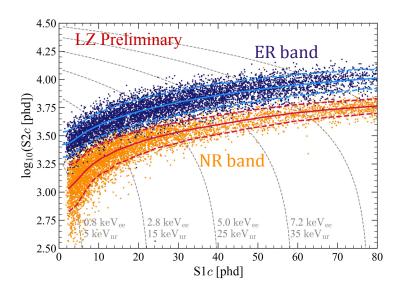
Olivia Valentino on behalf of the LZ Collaboration 20th Patras Workshop on Axions, WIMPs and WISPs - Tenerife September 2025

IMPERIAL

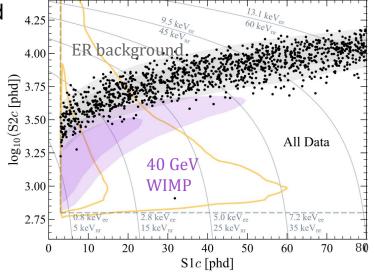

The LUX-ZEPLIN (LZ) experiment


LZ features a 7-tonne dual-phase Xe time projection chamber (TPC) read out by two arrays of VUV PMTs

Particles scattering in the active volume cause nuclear or electron recoils and deposit energy to produce:

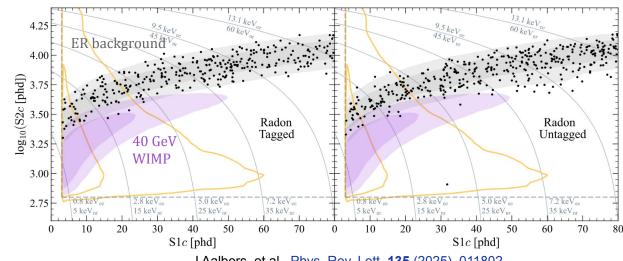

- Excitation → prompt scintillation (S1)
- lonisation → electron clouds drift upwards to gas phase and produce electroluminescence (S2)

LXe Skin and Outer Detector (OD) serve as veto systems


LXe TPCs are able to discriminate background-like **electron recoils** (ER) from signal-like **nuclear recoils** (NR) via the <u>charge-to-light</u> signals ratio

LXe TPCs are able to discriminate background-like **electron recoils (ER)** from signal-like **nuclear recoils (NR)** via the <u>charge-to-light</u> signals ratio

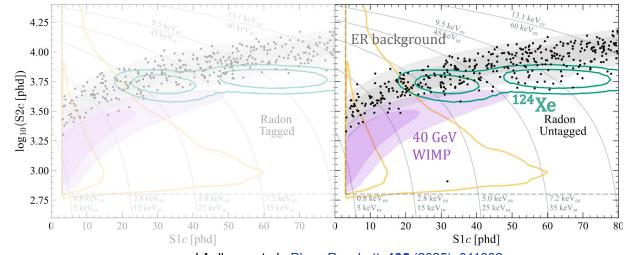
The WIMP search 2024 (WS2024) dataset showed evidence of abnormal


leakage from the ER band into the NR band

LXe TPCs are able to discriminate background-like electron recoils (ER) from signal-like nuclear recoils (NR) via the charge-to-light signals ratio

Recent datasets showed evidence of abnormal leakage from the ER band into the NR band

1st hypothesis: Leakage from standard ER events in long acquisitions



LXe TPCs are able to discriminate background-like **electron recoils (ER)** from signal-like **nuclear recoils (NR)** via the <u>charge-to-light</u> signals ratio

Recent datasets showed evidence of abnormal leakage from the ER band into the NR band

1st hypothesis: Leakage from standard ER events in long acquisitions, e.g. radon progeny

2nd hypothesis: Double electron captures (DEC) of ¹²⁴Xe with enhanced recombination

Double electron captures in LXe-based in DM searches

The XELDA experiment has shown that electron capture (EC) decays of ¹²⁷Xe appear more "NR-like", due to enhanced recombination at the decay site

(2024): 015103.

DECs should exhibit at least the same enhancement as single ECs

DEC of ¹²⁴Xe: the rarest decays known!

- T_{1/2} = (1.09 ± 0.14_{stat} ± 0.05_{sys}) × 10²² yr
 0.095% natural abundance

In current and future DM searches these decays become a non-negligible background:

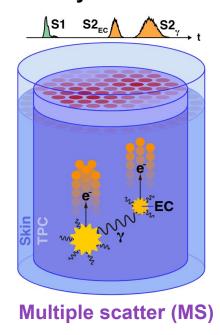
- Exposures are becoming very large
- Decay modes fall into the WIMP region of interest (ROI)

Subshells	Energy [keV]	Capture probability [%]
KK	64.62	74.13-74.15
KL_1	37.05	18.76-18.83
KM_1	32.98	3.83-3.84
KN_1	32.11	0.83 - 0.85
KO_1	31.93	0.13
$\mathrm{L_{1}L_{1}}$	10.04	1.22
${ m L_1M_1}$	6.01	0.49
L_1N_1	5.37	0.27
M_1M_1	2.05	0.13

D. J. Temples et al., *Physical Review D* 104.11 (2021): 112001. Xenon collaboration, *Nature*, 2019, 568.7753: 532-535. J Aalbers, et al., Journal of Physics G: Nuclear and Particle Physics 52.1

Double electron captures in LXe-based in DM searches

Challenge: The "NR-likeness" of these decays would appear as a leakage of ER events into the NR band, which can affect our sensitivity to dark matter if not properly modeled


Understanding of this effect is crucial!

Aim:

Use **single EC** in LZ to evaluate the enhancement in recombination and inform that of ¹²⁴Xe DEC decays

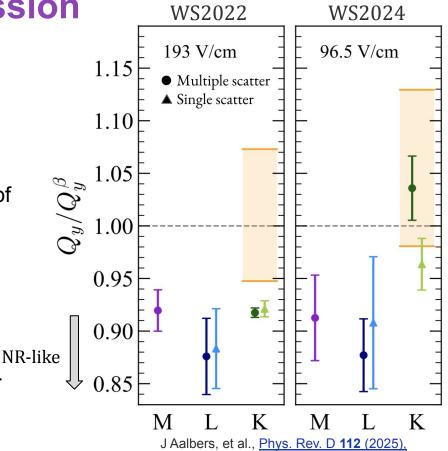
Single EC selection strategy

Select low energy ¹²⁵Xe and ¹²⁷Xe atomic cascades via high energy tag of **nuclear** de-excitation gamma-ray

S1 S1_{skin} S2_{EC}

Single scatter (SS)

Results: charge suppression


Charge yields are obtained via:

$$Q_y = \frac{S2c}{g_2E}$$
 True energy of vacancy shell (K, L, M, ...)

Results are then compared to charge yield of a β of equivalent energy taken from NEST:

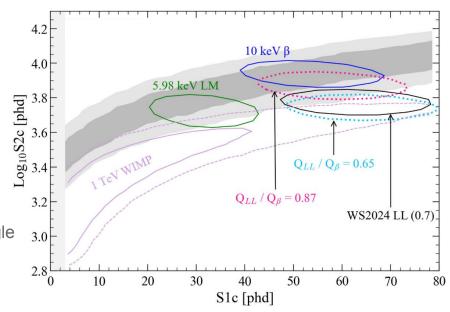
$$Q_y^{
m EC}/Q_y^{
m EC}$$

Good agreement between SS and MS measurement, except for K shell in WS2024

012024

¹²⁴Xe DEC modeling in WS2024

LM component: 7.1 ± 1.4 counts expected Enhancement was fixed at result for single L shell EC


LL component: 12.3 ± 2.5 counts expected Recombination enhancement was allowed to float in the background model

 $0.65 < Q^{LL}/Q^{\beta} < 0.87$

Thomas-Imel Box model with x2 ionisation density

Result for single L shell EC

Best fit parameter: 0.70 ± 0.04

Conclusions

Take away messages:

- Observed leakage of events from ER band into the NR band inconsistent with beta decays
- Explained by DEC decays of ¹²⁴Xe with enhanced recombination
- Modeled it exploiting in situ measurements of single ECs

It is remarkable that we see potential backgrounds in xenon-based dark matter searches from the **rarest decays ever measured!**

Published paper on this topic: <u>J Aalbers, et al., Phys. Rev. D 112 (2025), 012024</u>

Measurements and models of enhanced recombination following inner-shell vacancies in liquid xenon

LZ (LUX-ZEPLIN) Collaboration, 38 Institutions

@Izdarkmatter

https://lz.lbl.gov/

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- University of Wisconsin, Madison
- •

250 scientists, engineers, and technical staff

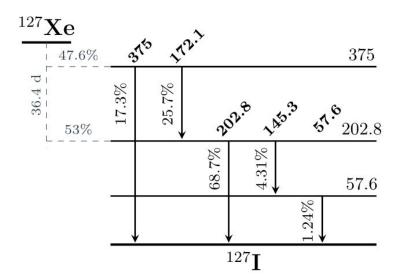
Thanks to our sponsors and participating institutions!

Thank you Poster session on Thursday for more discussion!

Backup

Electron capture decays in xenon isotopes

¹²⁵Xe and ¹²⁷Xe are produced via neutron capture

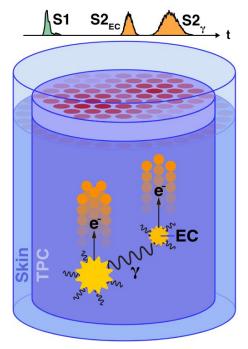

They undergo EC to excited state of iodine with:

- $t_{1/2}$ = 36.4 d for ¹²⁷Xe
- $t_{1/2}$ = 16.9 h for ¹²⁵Xe

The signal is formed of:

- Nuclear de-excitation **gamma**(s)
- Atomic cascade

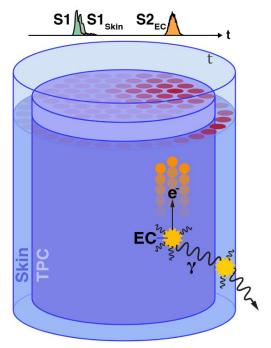
Subshell	Energy [keV]	Capture probability [%]	
K_1	33.1694	84.398 (34)	
L_1	5.1881	12.011 (17)	
L_2	4.8521	0.33752(49)	
M_1	1.0721	2.444(10)	
M_2	0.9305	0.07168(17)	
N_1	0.1864	0.609(5)	
N_2	0.1301	0.01697(12)	
O_1	0.0136	0.1100 (17)	
O_2	0.0038	0.001972(27)	

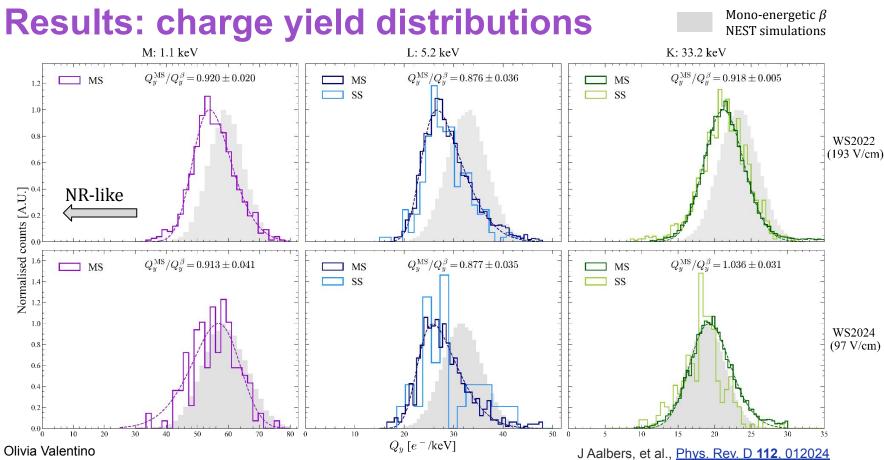


Olivia Valentino

Isolating EC events in LZ

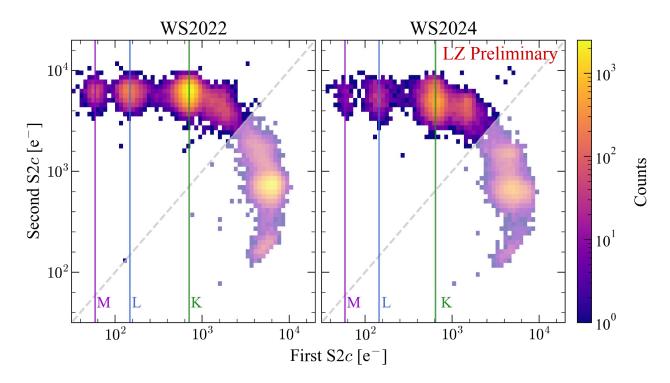
To isolate the atomic cascade in single EC we have two selection strategies:


- 1. Multiple scatter selection (MS)
- Single scatter selection
- If the gamma ray is high in energy it will travel enough in LXe to create a distinct photo-absorption site from the cascade
- We only select events where the gamma goes downwards, making the cascade the first of the S2s to reach the liquid surface

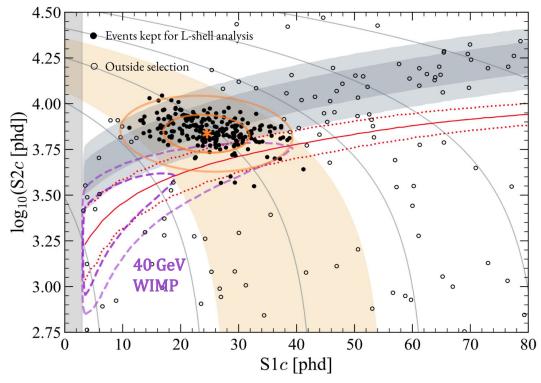


Isolating EC events in LZ

To isolate the atomic cascade in single EC we have two selection strategies:


- 1. Multiple scatter selection
- 2. Single scatter selection (SS)
- If the capture occurs at the edge of the TPC the gamma ray can escape and is absorbed in the skin, yielding a skin tag
- Resulting event in TPC is a single scatter
- Trade-off between wall backgrounds and statistics

Isolating EC events in LZ: MS selection


- Similar selection strategy for WS2022 and WS2024 dataset
- K, L and M shell populations are isolated in both runs

Olivia Valentino

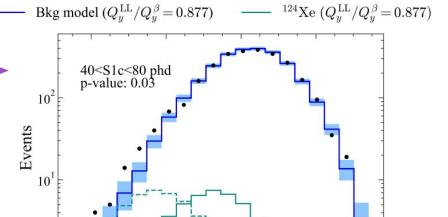
Isolating EC events in LZ: SS selection

- Black points are L shell captures of ¹²⁵Xe and ¹²⁷Xe within chosen energy range (tan)
- Distinct shift downwards can be observed in the population from the ER background (grey) into the NR band (red)

Summary table

Run	Source	$Q_y^{ m EC}~[e^-/{ m keV}]$	$Q_y^{ ext{EC}}/Q_y^{eta}$
LZ WS2022 (193 V/cm)	M (MS)	$55.75 \pm 0.26_{\rm stat} \pm 1.13_{\rm sys}$	$0.920 \pm 0.004_{\rm stat} \pm 0.019_{\rm sys}$
	L (MS)	$28.68 \pm 0.13_{\rm stat} \pm 0.58_{\rm sys}$	$0.876 \pm 0.004_{\rm stat} \pm 0.036_{\rm sys}$
	L (SS)	$28.92 \pm 0.38_{\rm stat} \pm 0.45_{\rm sys}$	$0.883 \pm 0.012_{\rm stat} \pm 0.036_{\rm sys}$
	K (MS)	$21.38 \pm 0.04_{\rm stat} \pm 0.31_{\rm sys}$	$0.918 \pm 0.002_{\rm stat} \pm 0.004_{\rm sys}$
	K (SS)	$21.46 \pm 0.12_{\rm stat} \pm 0.30_{\rm sys}$	$0.921 \pm 0.005_{\rm stat} \pm 0.006_{\rm sys}$
	M (MS)	$54.59 \pm 1.61_{\rm stat} \pm 2.49_{\rm sys}$	$0.913 \pm 0.027_{\rm stat} \pm 0.031_{\rm stat}$
	L (MS)	$27.81 \pm 0.22_{\rm stat} \pm 0.98_{\rm sys}$	$0.877 \pm 0.007_{\rm stat} \pm 0.034_{\rm sys}$
LZ WS2024 (96.5 V/cm)	L (SS)	$28.79 \pm 1.76_{\rm stat} \pm 0.84_{\rm sys}$	$0.908 \pm 0.056_{\rm stat} \pm 0.029_{\rm sys}$
	K (MS)	$19.62 \pm 0.06_{\rm stat} \pm 0.67_{\rm sys}$	$1.036 \pm 0.003_{\rm stat} \pm 0.030_{\rm sys}$
	K (SS)	$18.25 \pm 0.24_{\rm stat} \pm 0.48_{\rm sys}$	$0.964 \pm 0.013_{\rm stat} \pm 0.021_{\rm sys}$
	N (MS)	$75.3 \pm 6.5_{\mathrm{stat}} \pm 5.2_{\mathrm{sys}}$	$1.151 \pm 0.099_{\rm stat} \pm 0.080_{\rm sys}$
IIIV (190 V/em)	M (MS)	$61.4 \pm 0.5_{\rm stat} \pm 4.3_{\rm sys}$	$1.127 \pm 0.009_{\rm stat} \pm 0.079_{\rm sys}$
LUX (180 V/cm)	L (MS)	$30.8 \pm 0.1_{\rm stat} \pm 2.1_{\rm sys}$	$0.928 \pm 0.003_{\rm stat} \pm 0.063_{\rm sys}$
	K (MS)	$22.72 \pm 0.03_{\rm stat} \pm 1.58_{\rm sys}$	$0.984 \pm 0.001_{\rm stat} \pm 0.068_{\rm sys}$
XELDA~(258~V/cm)	L (SS)	$32.87 \pm 0.07_{\rm stat} \pm 0.37_{\rm sys}$	$0.909 \pm 0.003_{\rm stat} \pm 0.007_{\rm sys}$
XELDA~(363~V/cm)	L (SS)	$33.63 \pm 0.03_{\rm stat} \pm 0.33_{\rm sys}$	$0.917 \pm 0.001_{\rm stat} \pm 0.009_{\rm sys}$

---- 124 Xe $(Q_{\nu}^{LL}/Q_{\nu}^{\beta} = 0.70)$

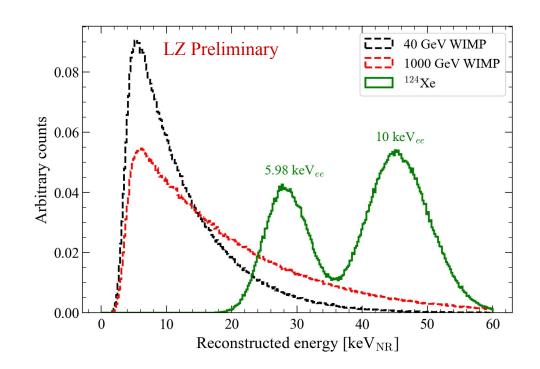

Impact on WIMP searches

Sensitivity study of 1,000 live day exposure was performed

Two possibilities explored:

- Modelling LL-capture like an L-capture ——
- 2. Modelling LL with best-fit, but:
 - Including MM as M
 - Including LM & LN as L
 - Varying branching ratios by ±40%

In each case, the worst impact is a ~10% reduction in sensitivity for > 30 GeV/c² WIMP masses


1000d sim $(Q_y^{\rm LL}/Q_y^{\beta} = 0.70)$

 $(\log_{10}(\mathrm{S}2c) - \mu_{ER})/\sigma_{ER}$

Simulated energy spectrum of ¹²⁴Xe

Energy spectrum of LL and LM components of ¹²⁴Xe compared to spectrum of 40 GeV and 1000 GeV WIMP

Counts are arbitrarily normalised independently

The Thomas-Imel box model

This model places the recombination inside a box of size 2a in which all charges are uniformly distributed

Recombination is controlled by the ξ parameter via:

$$Q_y = rac{\ln(1+\xi)}{W\xi\left(1+N_{
m ex}/N_i
ight)} \qquad \xi = rac{N_ilpha}{4a^2v_d} \, .$$

 ξ is related to the ionisation density

We assume that ECs and β interactions produce the same $N_{_{I'}}$ within different boxes of sizes $a_{_{\rm L}}$ $a_{_{\rm M}}$ and $a_{_{\beta}}$

The difference in recombination is wholly attributed to differences in ionization density (and box size)