Observing the string axiverse

Francesca Chadha-Day IPPP, Durham University

Patras Workshop on Axions, WIMPs and WISPs
Santa Cruz de Tenerife

Based on 2311.13658, 2107.12813 and ongoing work

The String Axiverse

See David Marsh's Talk

Hanson, Notices of the Amer. Math. Soc. 41 (9): 1156-1163, (November/December 1994)

Figure from Gendler, Marsh, McAllister & Moritz, 2309.13145

The String Axiverse

Type IIb String Theory

Kreuzer-Skarke database hep-th/0002240

The String Axiverse

$$\mathcal{L} \supset \sum_{i} \left(-\frac{1}{2} \partial^{\mu} \phi_{i} \partial_{\mu} \phi_{i} - \frac{1}{2} m_{i}^{2} \phi_{i}^{2} - g_{i}^{\gamma} \phi_{i} \tilde{F}^{\mu\nu} F_{\mu\nu} + g_{i}^{e} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \partial_{\mu} \phi_{i} \right)$$

Wish to work in a convenient basis:

- Mass basis: mass matrix is diagonal, no oscillations between propagating ALP states.
- Electromagnetic basis: only one ALP couples to the photon with coupling $g^{\gamma} = \sqrt{\sum g_i^{\gamma^2}}$.
- Electronic basis: only one ALP couples to the electron with coupling $g^e = \sqrt{\sum g_i^{e^2}}$.
- The electromagnetic and electronic ALPs are in general neither orthogonal nor colinear.
- For the QCD basis see Gavela, Quilez & Ramos, 2305.15465.

Basis Choice

$$\mathcal{L} \supset \sum_{i} \left(-\frac{1}{2} \partial^{\mu} \phi_{i} \partial_{\mu} \phi_{i} - \frac{1}{2} m_{i}^{2} \phi_{i}^{2} - g_{i}^{\gamma} \phi_{i} \tilde{F}^{\mu\nu} F_{\mu\nu} + g_{i}^{e} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \partial_{\mu} \phi_{i} \right)$$

- In the full theory, all basis choices give the same results.
- QFT with "flavour eigenstates" is non-trivial.
- Different bases may give different results when combined with other approximations.
- Oscillations between states when not in the mass basis, akin to neutrino oscillations (see FCD, Maxwell & Turner, 2311.13658).
- Misalignment between electromagnetic and electronic bases.
- Conserved charge in the massless limit must be considered for thermal production (see Gendler, Marsh, McAllister & Moritz, 2309.13145).

Mass eigenstates

$$\mathcal{L} \supset \sum_{i} \left(-\frac{1}{2} \partial^{\mu} \phi_{i} \partial_{\mu} \phi_{i} - \frac{1}{2} m_{i}^{2} \phi_{i}^{2} - g_{i}^{\gamma} \phi_{i} \tilde{F}^{\mu\nu} F_{\mu\nu} + g_{i}^{e} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \partial_{\mu} \phi_{i} \right)$$

- Some experiments search for each mass eigenstate individually.
- Example: axion haloscopes, radio line searches

Searches for the Electromagnetic ALP

$$\phi_{\gamma} = \frac{1}{8\gamma} \sum_{i} g_{i}^{\gamma} \phi_{i}$$

$$g^{\gamma} = \sum_{i} g_{i}^{\gamma^{2}}$$

- When no masses or other couplings are relevant, we can search for a single light ALP with coupling g_{γ} to photons.
- Example: stellar cooling bounds.

$$|\phi_i^{\text{mass}}\rangle = U_{\alpha i}^{\gamma} |\phi_{\alpha}^{\text{EM}}\rangle$$

The Electromagnetic ALP

$$\phi_{\gamma} = \frac{1}{8\gamma} \sum_{i} g_{i}^{\gamma} \phi_{i}$$

$$g^{\gamma} = \sum_{i} g_{i}^{\gamma^{2}}$$

$$|\phi_i^{\text{mass}}\rangle = U_{\alpha i}^{\gamma} |\phi_{\alpha}^{\text{EM}}\rangle$$

- In the electromagnetic basis, other fields orthogonal to the EM ALP do not couple directly to electromagnetism.
- When the ALP mass is not relevant, the EM ALP is produced and detected by electromagnetic processes.
- The EM ALP is in general not a mass eigenstate, so will oscillate into the orthogonal "hidden" ALP states.
- Misalignment between electromagnetic and electronic bases.

The Electromagnetic ALP

$$\phi_{\gamma} = \frac{1}{8\gamma} \sum_{i} g_{i}^{\gamma} \phi_{i}$$

$$g^{\gamma} = \sum_{i} g_{i}^{\gamma 2}$$

Electromagnetic ALP to hidden ALP oscillation probability for two mass eigenstates:

$$P_{\phi_{\gamma} \to \phi_h} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$|\phi_i^{\text{mass}}\rangle = U_{\alpha i}^{\gamma} |\phi_{\alpha}^{\text{EM}}\rangle$$

Example: The CERN Axion Solar Telescope

Reproduced from 1705.02290

- ALP states ϕ_{γ} and ϕ_{e} are produced in the sun.
- CAST with evacuated magnet bores detects the state $\phi_{\scriptscriptstyle\gamma}$.
- ALPs produced in the Sun may oscillate into hidden ALPs as they travel to Earth, and therefore be unobservable to CAST.

Example: The CERN Axion Solar Telescope

For 2 mass eigenstates:

$$P_{\phi_{\gamma} \to \phi_{\gamma}} = 1 - \sin^{2} 2\theta \frac{\int_{2\text{keV}}^{7\text{keV}} \sin^{2} \left(\frac{\Delta m^{2}L}{4E}\right) \frac{d\Phi_{a}}{dE} dE}{\int_{2\text{keV}}^{7\text{keV}} \frac{d\Phi_{a}}{dE} dE}$$

Example: The CERN Axion Solar Telescope

The Matter Potential

- Propagation of ALP states is affected by the interactions of each mass eigenstate with their environment.
- This can be compared to the MSW effect for neutrino oscillations.
- In many environments (e.g. the sun) the matter potential is negligible, as ALPs interact even more feebly than neutrinos.

Flavour Oscillations in Quantum Field Theory

Figure from Dobrev, Melnikov & Schwetz, 2504.10600

Flavour Oscillations with Unruh-DeWitt Detectors

Figure from Torres, Perche, Landulfo & Matsas, 2009.10165

Oscillation and detection

Production of ALP state(s)

Propagation

Detection

$$P_{\text{2ALPs}}(\phi \rightarrow \gamma) = P_{\text{1ALP}}(\phi \rightarrow \gamma) \cdot P_{\phi_{\gamma} \rightarrow \phi_{h}}(L)$$

Oscillation Probability

- . Finite detector size becomes relevant when $D \gtrsim \frac{E}{m^2}$
- For $D < \frac{E}{m^2}$, the detector is effectively point-like and can use neutrino-like oscillation theory
- From considering "smeared" Unruh-DeWitt detectors
- Corresponds to $D \gtrsim {\rm ALP}$ oscillation length
- In this case, we can still use the mass basis...

ALP to photon conversion in the mass basis

$$\left(\omega + \begin{pmatrix} \Delta_{\gamma} & 0 & \Delta_{\gamma ax} \\ 0 & \Delta_{\gamma} & \Delta_{\gamma ay} \\ \Delta_{\gamma ax} & \Delta_{\gamma ay} & \Delta_{a} \end{pmatrix} - i\partial_{z} \right) \begin{pmatrix} |\gamma_{x}\rangle \\ |\gamma_{y}\rangle \\ |\phi\rangle \end{pmatrix} = 0$$

$$P_{a\to\gamma}(L) = |\langle 1, 0, 0|f(L)\rangle|^2 + |\langle 0, 1, 0|f(L)\rangle|^2$$

$$\Delta_{\gamma} = -\frac{\omega_{pl}^2}{2\omega}$$

$$\Delta_{\alpha} = -\frac{m^2}{\omega}$$

$$\Delta_{a} = -\frac{\omega}{\omega}$$

$$\Delta_{a} = g^{\gamma}B_{i}$$

ALP to photon conversion in the mass basis

$$\left(\omega + \begin{pmatrix} \Delta_{\gamma} & 0 & \Delta_{\gamma ax1} & \Delta_{\gamma ax2} \\ 0 & \Delta_{\gamma} & \Delta_{\gamma ay1} & \Delta_{\gamma ay2} \\ \Delta_{\gamma ax1} & \Delta_{\gamma ay1} & \Delta_{a1} & 0 \\ \Delta_{\gamma ax2} & \Delta_{\gamma ay2} & 0 & \Delta_{a2} \end{pmatrix} - i\partial_{z} \right) \begin{pmatrix} |\gamma_{x}\rangle \\ |\gamma_{y}\rangle \\ |\phi_{1}\rangle \\ |\phi_{2}\rangle \end{pmatrix} = 0$$

Oscillation and detection

Production of ALP state(s)

Propagation

Detection

$$P_{\text{2ALPs}}(\phi \rightarrow \gamma) = P_{\text{1ALP}}(\phi \rightarrow \gamma) \cdot P_{\phi_{\gamma} \rightarrow \phi_{h}}(L)$$

Mass basis calculations

Single domain with $m_i \ll \omega_{pl}$ and $D \sim \frac{E}{m^2}$

Mass basis calculations

Oscillation Probability

For $D < \frac{E}{m^2}$, the detector is effectively point-like and can use neutrino-like oscillation theory

Example: CAST evacuated bore operation

$$E \sim \text{keV}$$

$$m < 10^{-2} \text{eV}$$

$$\frac{E}{m_{\text{max}}^2} \sim 1 \,\text{m}$$

$$D \sim 10 \,\text{m}$$

Example: SN 1987A

Oscillation Probability

For $D < \frac{E}{m^2}$, the detector is effectively point-like and can use neutrino-like oscillation theory

Example: SN1987A

$$E \sim 100 \,\text{MeV}$$

 $m < 10^{-8} \,\text{eV}$

$$\frac{E}{m_{\text{max}}^2} \sim 10^{18} \,\text{m}$$

Milky Way $\sim 10^{20}$ m

Summary

- String theory suggests there are a handful of ALPs with significant couplings to the SM
- Several ALPs ≠ one ALP with equivalent total coupling
- ALPs are not neutrinos we expect new kinds of oscillation physics

Unruh-DeWitt detectors

$$S = -\lambda \int d\tau \chi(\tau) \left[\hat{\sigma}^{+}(\tau) \hat{\phi}(\mathbf{x}(\tau)) + \hat{\sigma}^{-}(\tau) \hat{\phi}(\mathbf{x}(\tau)) \right]$$

Smeared Detector:

$$S = -\lambda \int d^3\mathbf{x} \int d\tau \chi(\tau) \Big[F(\mathbf{x}) \hat{\sigma}^{\dagger}(\tau) \hat{\phi}(\mathbf{x}(\tau), \mathbf{x}) + F^*(\mathbf{x}) \hat{\sigma}^{-}(\tau) \hat{\phi}(\mathbf{x}(\tau), \mathbf{x}) \Big]$$

Unruh-DeWitt Detectors

Our UDW source and detector couple to the electromagnetic ALP state:

$$\begin{split} \hat{H}_I(t) &= \lambda_s \chi_s(t) F_s(\mathbf{x}) \hat{\sigma}_s^-(t) \hat{\phi}_\gamma \left(\mathbf{x}_s\right) + \text{h.c.} \\ &= \hat{H}_s(\mathbf{x}_s) \\ &+ \lambda_d \chi_d(t) F_d(\mathbf{x} - \mathbf{L}) \hat{\sigma}_d^-(t) \hat{\phi}_\gamma \left(\mathbf{x}_d\right) + \text{h.c.} \end{split}$$

$$=\hat{H}_d(\mathbf{x}_d)$$

Oscillation Amplitude

source

time

source

time

$$\mathcal{A}_{\gamma \to \gamma} = \langle f | \mathcal{T} \exp (iS) | i \rangle$$

$$= -\int_{\text{detector}} dt \, d^3 \mathbf{x} \int_{\text{detector}} dt' \, d^3 \mathbf{x}' \langle f | \hat{H}_s(t) \hat{H}_d(t') + \hat{H}_d(t) \hat{H}_s(t') | i \rangle + \mathcal{O}(\lambda^3)$$

$$|i\rangle = |0\rangle |e_s\rangle |g_d\rangle$$

$$|f\rangle = |0\rangle |g_s\rangle |e_d\rangle$$

Oscillation Amplitude

Evaluate using:

$$\langle 0 | \phi_j(x)\phi_k(x') | 0 \rangle = \delta_{jk} \int \frac{\mathrm{d}^3 p_j}{16\pi^3 \omega_j(\mathbf{p})} e^{-\mathrm{i}p_j \cdot (x - x')}$$

$$|\phi_i^{\text{mass}}\rangle = U_{\alpha i}^{\gamma} |\phi_{\alpha}^{\text{EM}}\rangle$$

Oscillation probability

Assume detector switched in for some finite time interval:

$$\chi_{S}(t) = e^{-\epsilon|t|}, \quad \chi_{d}(t) = \Theta\left(t - t_{0}\right) - \Theta\left(t - t_{1}\right)$$

$$\Delta t \equiv t_1 - t_0 > 0$$

Detector excitation rate for arbitrarily long detector times:

$$\Gamma_{\gamma \to \gamma} \equiv \lim_{\Delta t \to +\infty} \frac{\left|\mathscr{A}_{\gamma \to \gamma}\right|^2}{\Delta t}$$

Oscillation Probability

$$P_{\gamma \to \gamma} = \frac{\Gamma_{\gamma \to \gamma}}{\sum_{\alpha} \Gamma_{\gamma \to \alpha}} = \frac{\left| \int d^3 \mathbf{x} d^3 \mathbf{x}' \sum_{j} U_{\gamma j} U_{\gamma j} e^{i \frac{m_j^2 |\mathbf{x} - \mathbf{x}'|}{2E}} F_s(\mathbf{x}) F_d(\mathbf{x}' - \mathbf{L}) \right|^2}{N}$$

Oscillation Probability

For a point-like source and a step function detector of size D:

$$P_{\gamma \to \gamma} = \frac{\Gamma_{\gamma \to \gamma}}{\sum_{\alpha} \Gamma_{\gamma \to \alpha}} = \frac{\sum_{i,j} U_{\gamma i}^{2} U_{\gamma j}^{*2} e^{\frac{iL}{2E}(m_{i}^{2} - m_{j}^{2})} \frac{4E}{m_{i}^{2}D} \frac{4E}{m_{j}^{2}D} \sin \frac{m_{i}^{2}D}{4E} \sin \frac{m_{j}^{2}D}{4E}}{\sum_{i} U_{\gamma i} U_{\gamma i}^{*} \left(\frac{4E}{m_{i}^{2}D}\right)^{2} \sin^{2} \frac{m_{i}^{2}D}{4E}}$$