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The String Axiverse

Wish to work in a convenient basis:


• Mass basis: mass matrix is diagonal, no oscillations between propagating ALP states.


• Electromagnetic basis: only one ALP couples to the photon with coupling .


• Electronic basis: only one ALP couples to the electron with coupling .


• The electromagnetic and electronic ALPs are in general neither orthogonal nor colinear.


• For the QCD basis see Gavela, Quilez & Ramos, 2305.15465.

gγ = ∑ gγ
i

2

ge = ∑ ge
i

2



Basis Choice

• In the full theory, all basis choices give the same results.


• QFT with “flavour eigenstates” is non-trivial.


• Different bases may give different results when combined with other approximations.


• Oscillations between states when not in the mass basis, akin to neutrino oscillations (see FCD, Maxwell 
& Turner, 2311.13658).


• Misalignment between electromagnetic and electronic bases.


• Conserved charge in the massless limit must be considered for thermal production (see Gendler, Marsh, 
McAllister & Moritz, 2309.13145).



Mass eigenstates

• Some experiments search for each mass eigenstate individually.


• Example: axion haloscopes, radio line searches



Searches for the Electromagnetic ALP

• When no masses or other couplings are relevant, we 
can search for a single light ALP with coupling  to 
photons.


• Example: stellar cooling bounds.
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The Electromagnetic ALP

• In the electromagnetic basis, other fields orthogonal 
to the EM ALP do not couple directly to 
electromagnetism.


• When the ALP mass is not relevant, the EM ALP is 
produced and detected by electromagnetic 
processes.


• The EM ALP is in general not a mass eigenstate, so 
will oscillate into the orthogonal “hidden” ALP 
states.


• Misalignment between electromagnetic and 
electronic bases.
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The Electromagnetic ALP

Electromagnetic ALP to hidden ALP 
oscillation probability for two mass 
eigenstates:


Pϕγ→ϕh
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Example: The CERN Axion Solar Telescope

• ALP states  and  are produced in the sun.


• CAST with evacuated magnet bores detects the state .


• ALPs produced in the Sun may oscillate into hidden ALPs as they travel to Earth, and therefore be unobservable to CAST. 
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Reproduced from 1705.02290



Example: The CERN Axion Solar Telescope

Pϕγ→ϕγ
= 1 − sin2 2θ

∫ 7keV
2keV

sin2 ( Δm2L
4E ) dΦa

dE dE

∫ 7keV
2keV

dΦa

dE dE

For 2 mass eigenstates:



Example: The CERN Axion Solar Telescope

θ = π/3

CAST signal is suppressed compared to 

a single ALP with the same total coupling



The Matter Potential

• Propagation of ALP states is affected by the interactions of each mass eigenstate with their 
environment.


• This can be compared to the MSW effect for neutrino oscillations.


• In many environments (e.g. the sun) the matter potential is negligible, as ALPs interact even more 
feebly than neutrinos.




Flavour Oscillations in Quantum Field Theory

Figure from Dobrev, Melnikov & Schwetz, 2504.10600 



Flavour Oscillations with Unruh-DeWitt Detectors

Figure from Torres, Perche, Landulfo & Matsas, 2009.10165



Oscillation and detection

Production of ALP state(s) Propagation

L

Detection

D

ϕγ ϕh

  P2ALPs(ϕ → γ) = P1ALP(ϕ → γ) . Pϕγ→ϕh
(L)



Oscillation Probability

• Finite detector size becomes relevant when  


• For , the detector is effectively point-like and can use neutrino-like oscillation theory


• From considering “smeared” Unruh-DeWitt detectors


• Corresponds to ALP oscillation length


• In this case, we can still use the mass basis…
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ALP to photon conversion in the mass basis

• 


• 


•
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ALP to photon conversion in the mass basis



Oscillation and detection

Production of ALP state(s) Propagation

L

Detection

D

ϕγ ϕh

  P2ALPs(ϕ → γ) = P1ALP(ϕ → γ) . Pϕγ→ϕh
(L)



Mass basis calculations

1 ALP 2 ALPs

Single domain with   and  mi ≪ ωpl D ∼
E

m2



Mass basis calculations

  Pϕγ→ϕh
(L) =

P2ALPs(ϕ → γ)
P1ALP(ϕ → γ)

Consistent with 

flavour oscillations picture  

Cannot use 

flavour oscillations 


picture  

Finite detector size becomes 

relevant when  D >
E

m2



Oscillation Probability

Example: CAST evacuated bore operation 









E ∼ keV
m < 10−2eV

E
m2

max
∼ 1 m

D ∼ 10 m

For , the detector is effectively point-like and can use neutrino-like oscillation theory
D <
E

m2



Example: SN 1987A

ϕγ
γ

ϕγ ϕh



Oscillation Probability

For , the detector is effectively point-like and can use neutrino-like oscillation theory
D <
E

m2

Example: SN1987A 









E ∼ 100 MeV
m < 10−8eV

E
m2

max
∼ 1018 m

Milky Way ∼ 1020 m



Summary

• String theory suggests there are a handful of ALPs with significant couplings to the SM


• Several ALPs  one ALP with equivalent total coupling


• ALPs are not neutrinos - we expect new kinds of oscillation physics
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Unruh-DeWitt detectors

S = − λ∫ dτ χ(τ)[ ̂σ+(τ) ̂ϕ(x(τ)) + ̂σ−(τ) ̂ϕ(x(τ))]
Smeared Detector:

S = − λ∫ d3x∫ dτ χ(τ)[F(x) ̂σ+(τ) ̂ϕ(x(τ), x) + F*(x) ̂σ−(τ) ̂ϕ(x(τ), x)]



Unruh-DeWitt Detectors

Our UDW source and detector couple to the electromagnetic ALP state: 

ĤI(t) = λsχs(t)Fs(x) ̂σ−
s (t) ̂ϕγ (xs) +  h.c. 

=Ĥs(xs)
+λd χd(t)Fd(x − L) ̂σ−

d (t) ̂ϕγ (xd) +  h.c. 

=Ĥd(xd)



Oscillation Amplitude

| i⟩ = |0⟩ es⟩ gd⟩
| f⟩ = |0⟩ gs⟩ ed⟩

𝒜γ→γ = ⟨ f |𝒯 exp (iS) | i⟩

= − ∫ dt d3x∫ dt′￼d3x′￼⟨ f | Ĥs(t)Ĥd (t′￼) + Ĥd(t)Ĥs (t′￼) | i⟩ + 𝒪(λ3)



Oscillation Amplitude

Evaluate using:
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Oscillation probability
Assume detector switched in for some finite time interval:

χs(t) = e−ϵ|t|, χd(t) = Θ (t − t0) − Θ (t − t1)
Δt ≡ t1 − t0 > 0
Detector excitation rate for arbitrarily long detector times:

Γγ→γ ≡ lim
Δt→+∞

𝒜γ→γ
2

Δt



Oscillation Probability
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Oscillation Probability
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For a point-like source and a step function detector of size D:


