

Dark matter search landscape

XENONnT Experiment

Direct detection of dark matter

200 + Scientists 30 Institutions 12 Countries

Main Objective: Discover Weakly Interacting Massive Particles (WIMPs)

XENON program timeline

XENON100 2008 62 kg

XENONnT 2020 6 t

XENONnT Experiment

Direct detection of dark matter

- S1: Prompt scintillation light
- **S2:** Secondary scintillation light induced by ionized electrons
 - 3D Position reconstruction: Drift time + PMT pattern
 - Energy reconstruction:

$$E = W(\frac{cS_1}{g_1} + \frac{cS_2}{g_2})$$

W: Average energy to produce a quanta

cS1, cS2: Corrected area of S1 and S2

g1, **g2**: Gain of S1 and S2

Towards lighter Dark Matter

XENON

Low-photon S1 analysis

Phys. Rev. Lett. 134, 111802 (2025)

2 or 3 detected photons [4, 16] ionized electrons

Advantage: Search for light DM [3,12] GeV/c²
Challenges: Accidental Coincidence, Neutrino fog

S2-only analysis

Phys. Rev. Lett. 134, 161004 (2025)

<u>Advantage:</u> Search for lighter DM < 1 GeV/c² <u>Challenges:</u> Detector response modeling, Delayed electron emission

Drop

S1

ŕ

S1

S2

Typical S1-S2

Sensitive to

 $> 6 \text{ GeV/c}^2 \text{ DM}$

Smaller

S1

Challenge 1: Neutrino fog

Solar ⁸B neutrino
Coherent Elastic neutrino (v)
Nucleus Scattering (CEvNS)

Dark matter vs ⁸B CEvNS: similar recoil energy spectrum

Neutrino fog:

An "irreducible" background: ~ 300 nuclear recoils/tyr in [0.5, 5] keV

Solution: Measure solar ⁸B CEvNS with low-energy nuclear recoil calibration (YBe photoneutron source)

Challenge 2: Accidental coincidence (AC) background

Random pairing of isolated S1 and isolated S2

- Photoionization photons
- Lone-hits pile-up

- Delayed electrons trapped in the impurities
- Cathode or gas events losing S1

Background Suppression

S1 BDT*:

<u>Signal:</u> Narrow width, DPE** effect <u>AC:</u> Wider width, no DPE effect

*Boosted Decision Tree

**Double-photoelectron

S2 BDT:

<u>Signal:</u> Drift-time correlated width (diffusion)

AC: Uncorrelated width

Shadow:

Correlation with previous large S2

Isolated S1 rate: 15 Hz \Rightarrow 2.3 Hz

Isolated S2 rate: 150 mHz \Rightarrow 18 mHz

Background summary

AC: Accidental Coincidence background

- Validated by AC-rich sideband
- Uncertainty: 9% (SR0), 6% (SR1)

⁸B: CEvNS Signal

- Yields calibrated from YBe Neutron source
- 35% uncertainty from yields and efficiencies

ER: Electronic Recoil background

- Flat energy spectrum at O(0.1) keV
- 100% conservative uncertainty

NR: Nuclear Recoil background

- Full chain simulated
 - 58% uncertainty from sideband

Background dominated by AC and ⁸B neutrinos!

Blinded analysis

Events distribution through analysis key parameters Expected background 38.6, observed 37 events

Dark matter limit

- Excludes spin-independent
 DM-nucleon cross sections above
 2.5×10⁻⁴⁵ cm² at 90% confidence
 level for a 6 GeV/c² DM
- DM sensitivity and limit approach the "neutrino fog"

Challenge 1: Detector response modeling

Objective:

Model the detector response to relate true electron number to reconstructed electron number (*Ne,rec*)

Challenge:

Smearing of the *Ne,rec* due to the detector response fluctuations (diffusion, extraction efficiency, etc)

Approach:

Quantify *Ne,rec* using S2-splitting algorithm, identify the discrepancy with simulation

Good agreement between model and data

Challenge 2: Delayed electron emission

Delayed electrons trapped in the impurities

Approach:

- Pair delayed electrons (small S2) with preceding large S2
- Characterize their temporal and spatial distribution
- 3. Exclude the busy temporal / spatial region after large S2

Unblinding Events

After unblinding:

O(100) S2-only events observed in blinded analysis (blue) and unblinded analysis (gray)

Benchmark models:

10 MeV/c² & 100 MeV/c² DM-electron scattering (heavy mediator)

Effective livetime increases with electron number since fewer events are removed by the busy-time veto

Dark matter limits

DM Mass [keV]

Axion-like particles (electron coupling)

Stringent new limits on electron absorption of axion-like particles and dark photons for $m_X < 0.03 \text{ keV/c}^2$

Summary

Two science searches towards light dark matter in XENONnT:

- Low-photon S1 analysis \rightarrow sensitive to DM = [3, 12] GeV/c²
- S2-only analysis → extends reach to sub-GeV DM

Results:

- Spin-independent DM-nucleon cross section down to 2.5
 ×10⁻⁴⁵ cm² at 6 GeV/c² DM
- New leading constraints on dark photons and axion-like particles

Please see more details on the papers:

- Phys. Rev. Lett. 134, 111802 (2025)
- Phys. Rev. Lett. 134, 161004 (2025)

Summary

Two science

- Low-
- S2-o

Results:

- Spin ×10
- New parti

Please see 1

- Phys. Phys.

Back-up slides

How to identify NR (nuclear recoil)?

Using S2/S1 to discriminate electronic recoil (ER) and nuclear recoil (NR)

How to calibrate our detector?

Calibration for ER:

ERs from ²¹²Pb beta-decays from injected gaseous ²²⁰Rn:

- Continuous spectrum
- To define cS1 vs cS2 response for ER
- To validate cut acceptance

ERs from injected gaseous ³⁷Ar:

- mono-energetic at 2.8 keV
- To validate the low-energy ER response

Calibration for NR:

NRs from 241 AmBe neutron source:

- Tagged by a coincident gamma captured by neutron veto
- To define cS1 vs cS2 response for NR

How to identify the background?

ER background:

• Dominated by ²¹⁴Pb (a daughter of ²²²Rn) beta-decays

Surface background:

- beta decays of ²¹⁰Pb from TPC wall
- suppressed by fidicial volume cut

NR (neutron) background:

• Neutrons from spontaneous fission and (a,n) reaction

Accidental coincidence (AC) background:

• Random pairing of S1 and S2 lone signals

Upgrade from XENON1T to XENONnT

• Reduction of ER background:

Major background: β emitter ²¹⁴Pb, a daughter of ²²²Rn

Rn distillation column ⇒Reduction of ER background by **a factor of ~6**

- New xenon purification system
- \Rightarrow Higher electron survival rate

	Full drift time:	Electron lifetime:	Electron survival (@full drift length):
1T	0.67 ms	0.65 ms	30 %
nT	2.2 ms	~15 ms	86 % @ 15 ms

AC background removal

Machine learning AC background suppression

S1 and S2 features can distinguish signal and background using Boosted Decision Tree (BDT).

S1 BDT:

- Signal: Narrower S1 width, double-photoelectron (DPE) effect.
- AC: Wider S1 width, no DPE effect.

S2 BDT:

- Signal: Deeper event ~ wider S2, due to electron diffusion.

 AC: S2 width uncorrelated with event depth.

 Both BDT scores are used in the inference.

YBe calibration

Lower the detection threshold \Rightarrow Light DM

Why S2-only? Small example:

Q~2.8 keV from Ar37 decay

Detected Photoelectron [PE]

S2 amplified by secondary scintillation

S2 ~ 100 **★**S1 ⇒ S1 vanishes (<3 PE) but S2 remains (<500 PE)

NR: Nuclear recoil ER: Electronic recoil

Lower the detection threshold \Rightarrow Light DM

WIMP Mass [GeV/c²]

S2-only lower the detected recoiled energy:

	S1-S2	S2-only
ER	1.2 keV	13.7 eV (0.05-3 GeV DM)

Photoionization vs Delayed electrons

Photoionization

Photoelectric Effect:

- Impurities in the liquid xenon
- Metal surfaces

Delayed electrons

S2 width selection efficiency

DM limits

SRDM (Light Mediator)

Solar-Reflected DM = halo DM upscattered by Sun Halo DM (Light Mediator)

With velocity distribution from standard halo model