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How do we find them?
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Light Boson Detection

(1) Local Source

Null result directly relevant. Premium to produce and detect

(2) Cosmic Source
Ultra-light dark matter (<< | eV)
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2. Axion Dark Matter with Nonlinear
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3. Conclusions



Photon Polarization Search

(MAGPI)

With Michael Fedderke, David Kaplan + SQMS
Collaboration at Fermilab
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Measure Interferometrically
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Trap light in Fabry Perot cavity, compare phase shift
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Experimental Realization

ggb\if\If

Independent of frequency - can realize in optical or superconducting RF
Optical: Smaller mirrors, lower F

RF: Large mirrors, high F
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Issues
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phase shift depends on
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Strain in mirror induces phase -
scales with F but not L
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Systematics

Issues

Cavity Length Fluctuations -
phase shift depends on
frequency

Strain in mirror induces phase -
scales with F but not L
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Handles

Use two different frequencies - differential measurement retains signal
Modulate L, but fix F - mirror strain remains same, signal changes

Modulate orientation relative to source or distance
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RE Cavity

Q~101 L~1m,
Mass ~ 100 kg

Optical Cavity

I ~400, L ~10 m,
1064 nm light



Axion Dark Matter with Non-Linear Optics
(GALILEO)

With Reza Ebadi, David Kaplan and Ron Walsworth
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Charge sees small
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field

oscillating L’ field
(dark matter)

Detect high frequency oscillating electric field
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Send light through optical resonator - measure phase shift
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Nonlinear Optics

Detect high frequency oscillating electric field

Crystal with index of refraction with a linear dependence on electric field
(e.g. Lithium Niobate)

Create Optical Cavity with Lithium Niobate - choose length to set resonance frequency

Send light through optical resonator - measure phase shift

- i Phase shift depends on index of refraction -
measures time varying electric field

—

E
Lowest frequency set by absorption length of light (~km)

High frequency cut-off: Nyquist limit, response time of
crystal (> THz)



Kinetic mixing
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Conclusions

1. Important to search broad range of
couplings and frequencies

2. Exciting opportunities in the RF for
polarization searches

3. Exploit non-linear optics for high
frequency resonators



