New Directions in Axion Detection

Surjeet Rajendran, The Johns Hopkins University

Goal: Solve theoretical problems of the Standard Model (Strong CP, flavor, hierarchy...)

Strategy: Propose global symmetry at some high scale, broken at low energy

Generic Prediction: Light weakly coupled Goldstone Boson (Axion, axion-like-particle, familon, relaxion...)

Goal: Solve theoretical problems of the Standard Model (Strong CP, flavor, hierarchy...)

Strategy: Propose global symmetry at some high scale, broken at low energy

Generic Prediction: Light weakly coupled Goldstone Boson (Axion, axion-like-particle, familon, relaxion...)

Technically Natural Interactions

 $\frac{\phi}{f_a}F\tilde{F}, \frac{\phi}{f_a}G\tilde{G}, \frac{\partial_{\mu}\phi}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi, g\phi h^2 \qquad \frac{F'_{\mu\nu}}{\Lambda}\bar{\Psi}\sigma^{\mu\nu}\Psi, J^{\mu}A'_{\mu}, \epsilon FF'$

Vector Cousin

$$\frac{F'_{\mu\nu}}{\Lambda}\bar{\Psi}\sigma^{\mu\nu}\Psi,J^{\mu}A'_{\mu},\epsilon FF'$$

Goal: Solve theoretical problems of the Standard Model (Strong CP, flavor, hierarchy...)

Strategy: Propose global symmetry at some high scale, broken at low energy

Generic Prediction: Light weakly coupled Goldstone Boson (Axion, axion-like-particle, familon, relaxion...)

Technically Natural Interactions

$$\frac{\phi}{f_a}F\tilde{F}, \frac{\phi}{f_a}G\tilde{G}, \frac{\partial_{\mu}\phi}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi, g\phi h^2 \qquad \frac{F'_{\mu\nu}}{\Lambda}\bar{\Psi}\sigma^{\mu\nu}\Psi, J^{\mu}A'_{\mu}, \epsilon FF'$$

Potentially Natural Interactions

$$g\phiar\Psi\Psi$$

Vector Cousin

$$\frac{F'_{\mu\nu}}{\Lambda}\bar{\Psi}\sigma^{\mu\nu}\Psi,J^{\mu}A'_{\mu},\epsilon FF'$$

Goal: Solve theoretical problems of the Standard Model (Strong CP, flavor, hierarchy...)

Strategy: Propose global symmetry at some high scale, broken at low energy

Generic Prediction: Light weakly coupled Goldstone Boson (Axion, axion-like-particle, familon, relaxion...)

Technically Natural Interactions

$$\frac{\phi}{f_a}F\tilde{F}, \frac{\phi}{f_a}G\tilde{G}, \frac{\partial_{\mu}\phi}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi, g\phi h^2 \qquad \frac{F'_{\mu\nu}}{\Lambda}\bar{\Psi}\sigma^{\mu\nu}\Psi, J^{\mu}A'_{\mu}, \epsilon FF'$$

Potentially Natural Interactions

$$g\phiar\Psi\Psi$$

How do we find them?

Vector Cousin

$$\frac{F'_{\mu\nu}}{\Lambda}\bar{\Psi}\sigma^{\mu\nu}\Psi,J^{\mu}A'_{\mu},\epsilon FF'$$

Light Boson Detection

(I) Local Source

Null result directly relevant. Premium to produce and detect

Light Boson Detection

(I) Local Source

Null result directly relevant. Premium to produce and detect

(2) Cosmic Source

Ultra-light dark matter (<< I eV)

Local Source

$$\frac{\partial_{\mu}\phi}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi$$

Spin Sensor

Local Source

$$rac{\partial_{\mu}\phi}{f_a}ar{\Psi}\gamma^{\mu}\gamma_5\Psi$$

Spin Sensor

Local Source

$$\frac{\partial_{\mu}\phi}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi$$

Spin Sensor

Polarization Rotation (Spin Sensor)

New opportunities?

$$rac{\phi}{f_a}F ilde{F}$$

Cosmological Source

Axion Dark Matter

Oscillating signal, narrow band $(Q \sim 10^6)$

Detect Using suitable Resonator

Cosmological Source

Axion Dark Matter

Oscillating signal, narrow band (Q ~ 106)

Detect Using suitable Resonator

Outline

- 1. Photon Polarization Search
- 2. Axion Dark Matter with Nonlinear Optics
 - 3. Conclusions

(MAGPI)

With Michael Fedderke, David Kaplan + SQMS Collaboration at Fermilab

$$\delta k = k_L - k_R = rac{
abla \phi}{f_a}$$
 Frequency Independent

$$\delta k = k_L - k_R = rac{
abla \phi}{f_a}$$
 Frequency Independent

Measure Interferometrically

$$\delta \phi = \delta k L$$

Setup

$$\delta k = k_L - k_R = \frac{\nabla \phi}{f_a}$$

$$\delta \phi = \delta k L$$

Want large L

Setup

$$\delta k = k_L - k_R = \frac{\nabla \phi}{f_a}$$
$$\delta \phi = \delta k L$$

Want large L

Trap light in Fabry Perot cavity, compare phase shift between left and right circularly polarized light

Setup

$$\delta k = k_L - k_R = \frac{\nabla \phi}{f_a}$$
$$\delta \phi = \delta k L$$

Want large L

Trap light in Fabry Perot cavity, compare phase shift between left and right circularly polarized light

Independent of frequency - can realize in optical or superconducting RF

Independent of frequency - can realize in optical or superconducting RF

Optical: Smaller mirrors, lower F

Independent of frequency - can realize in optical or superconducting RF

Optical: Smaller mirrors, lower F

RF: Large mirrors, high F

Systematics

$$\delta\phi = F\delta kL = F\frac{\nabla\phi}{f_a}L = \frac{1}{\sqrt{N_{\gamma}}}$$

Issues

Cavity Length Fluctuations - phase shift depends on frequency

Strain in mirror induces phase - scales with F but not L

Systematics

Issues

Cavity Length Fluctuations - phase shift depends on frequency

Strain in mirror induces phase - scales with F but not L

Handles

Use two different frequencies - differential measurement retains signal

Modulate L, but fix F - mirror strain remains same, signal changes

Modulate orientation relative to source or distance

Projected Sensitivity

RF Cavity

Q~10¹¹, L~1 m, Mass~100 kg

Optical Cavity

F ~400, L ~ 10 m, 1064 nm light

Axion Dark Matter with Non-Linear Optics

(GALILEO)

With Reza Ebadi, David Kaplan and Ron Walsworth

Cosmological Source

Axion Dark Matter

Oscillating signal, narrow band $(Q \sim 10^6)$

Detect Using suitable Resonator

Cosmological Source

Axion Dark Matter

Oscillating signal, narrow band (Q ~ 106)

Detect Using suitable Resonator

Detect high frequency oscillating electric field

Detect high frequency oscillating electric field

Crystal with index of refraction with a linear dependence on electric field (e.g. Lithium Niobate)

Create Optical Cavity with Lithium Niobate - choose length to set resonance frequency

Send light through optical resonator - measure phase shift

Detect high frequency oscillating electric field

Crystal with index of refraction with a linear dependence on electric field (e.g. Lithium Niobate)

Create Optical Cavity with Lithium Niobate - choose length to set resonance frequency

Send light through optical resonator - measure phase shift

Phase shift depends on index of refraction - measures time varying electric field

Detect high frequency oscillating electric field

Crystal with index of refraction with a linear dependence on electric field (e.g. Lithium Niobate)

Create Optical Cavity with Lithium Niobate - choose length to set resonance frequency

Send light through optical resonator - measure phase shift

Phase shift depends on index of refraction - measures time varying electric field

Lowest frequency set by absorption length of light (~km)

Detect high frequency oscillating electric field

Crystal with index of refraction with a linear dependence on electric field (e.g. Lithium Niobate)

Create Optical Cavity with Lithium Niobate - choose length to set resonance frequency

Send light through optical resonator - measure phase shift

Phase shift depends on index of refraction - measures time varying electric field

Lowest frequency set by absorption length of light (~km)

High frequency cut-off: Nyquist limit, response time of crystal (> THz)

Projected Sensitivity

Conservative Solid Lines: 1 s averaging Super aggressive dot dashed: ~ 1 yr averaging, 10 db Squeezing, 10 W

Conclusions

- 1. Important to search broad range of couplings and frequencies
- 2. Exciting opportunities in the RF for polarization searches
 - 3. Exploit non-linear optics for high frequency resonators