Axion-like Particles in the Very-High-Energy Sky: From MAGIC to CTAO

Ivana Batković

University of Padova and INFN Padova

LST COLLABORATION

Summary

- Why ALPs?
- ALPs in astrophysics
- How do we search for ALPs?
- ALPs and IACTs: MAGIC & LST-1

Why ALPs?

- Axion R. D. Peccei & H. Quinn, S. Weinberg & F. Wilczek: proposed as a solution to the Strong CP problem
- Generalisation Pseudo Nambu Goldstone bosons from spontaneously broken global symmetries:

Axion-like particles (independent mass and coupling)

• Production in the Early Universe through the misalignment mechanism:

Dark Matter candidate

HOW CAN WE OBSERVE THEIR INTERACTION WITH PHOTONS?

Why ALPs?

- Interaction with photons experimental search for ALPs
- Dark matter axions, solar axions, axions from supernovae, axions from astrophysical objects such as Active Galactic Nuclei and transient events
- Magnetic field is enabling "conversion" of an axion into a gamma ray photon

$$\mathcal{L}_{a\gamma\gamma} = -\frac{g_{a\gamma\gamma}}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} a = g_{a\gamma\gamma} \vec{E} \cdot \vec{B} a$$

• In the vast pool of experiments searching for ALPs...

Figure 1: ALPs parameters space, from: C. O'Hare, github.com/cajohare/AxionLimits

Signatures of ALPs in VHE gamma-ray spectra

Recovery (resurrection) of photons

• Signatures of ALPs in VHE gamma-ray spectra

Signatures of ALPs in VHE gamma-ray spectra

• Mixing occurs around the critical energy E_{crit} :

$$E_{crit} = 2.5 \ GeV \frac{\left|m_{a,neV}^2 - \omega_{pl,neV}^2\right|}{G_{11}B_{\mu G}}$$

https://gammaalps.readthedocs.io - solves the equations of motion of the photon-ALP system and calculates the $P_{\gamma\gamma}$

$$\frac{d\Phi_{obs}}{dE} = \frac{d\Phi_{int}}{dE} \times P_{\gamma\gamma}^{a,EBL}(E_{\gamma}; m_a, g_{a\gamma}, B; z)$$

Interacting with an atmospheric nucleus

Creation of an atmospheric shower

Cherenkov light

- Located at La Palma
- Detecting gamma rays with energies of 25 GeV - 100 TeV

MAGIC (two 17m diameter telescopes) & LST-1 (23m)

- Field of view ~ 3.5° (4.3°)
- Energy resolution ~15% (30%)
- Angular res. ~ 0.1°(0.3°) (energy dependent)

How do we search for ALPs?

ALP hypothesis

$$\frac{d\Phi_{obs}}{dE} = \frac{d\Phi_{int}}{dE} \times P_{\gamma\gamma}^{a,EBL}(E_{\gamma}; m_a, g_{a\gamma}, B; z)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Observed Intrinsic Gamma-ray flux energy

B - Ambient magnetic field

z - Source's redshift

We "build" a grid of $(m_a, g_{a\gamma})$ points, used for producing ALPs models

SOURCE + JET

 $B \sim 1 G$

 $L \sim 0.1 \text{ pc}$

GALAXY CLUSTER

 $B \sim 1 \mu G$

 $L\sim 10 \text{ kpc}$

INTERGALACTIC MEDIUM

B < 1 nG

 $L \sim 1 \text{ Mpc}$

MILKY WAY

 $B \sim 1 \mu G$

 $L\sim 10 \text{ kpc}$

Source and jet magnetic field

 $B \sim 1 G$ $L \sim 0.1 \text{ kp}$

- Relevant for sources with observed relativistic jets and/or in regions (galaxy clusters) with sparse magnetic field; blazars
- Negligible impact for sources whose viewing angle is big with respect to the line of sight; i.e. radio galaxies

Source and jet magnetic field

 $B \sim 1 G$ $L \sim 0.1 \text{ kpc}$

- Relevant for sources with observed relativistic jets and/or in regions (galaxy clusters) with sparse magnetic field; blazars
- Negligible impact for sources whose viewing angle is big with respect to the line of sight; i.e. radio galaxies

Galaxy cluster magnetic field

 $B \sim 1 \mu G$ $L \sim 10 \text{ kpc}$

 Modelled as a random field assuming the Gaussian turbulence, following model described in Meyer et al. JCAP09(14')003

Source and jet magnetic field

 $B \sim 1 G$ $L \sim 0.1 \text{ kpc}$

- Relevant for sources with observed relativistic jets and/or in regions (galaxy clusters) with sparse magnetic field; blazars
- Negligible impact for sources whose viewing angle is big with respect to the line of sight; i.e. radio galaxies

Galaxy cluster magnetic field

 $B \sim 1 \mu G$ $L \sim 10 \text{ kpc}$

 Modelled as a random field assuming the Gaussian turbulence, following model described in Meyer et al. JCAP09(14')003

Intergalactic magnetic field

B < 1 nG $\sim 1 \text{ Mpc}$

- Importance of the inclusion of the mixing is evaluated based on the choice of the source, its distance, tested mass and coupling.
- Extragalactic background light absorption included

Source and jet magnetic field

 $B \sim 1 G$ $L \sim 0.1 \text{ kpc}$

- Relevant for sources with observed relativistic jets and/or in regions (galaxy clusters) with sparse magnetic field; blazars
- Negligible impact for sources whose viewing angle is big with respect to the line of sight; i.e. radio galaxies

Galaxy cluster magnetic field

 $B \sim 1 \mu G$ $L \sim 10 \text{ kpc}$

 Modelled as a random field assuming the Gaussian turbulence, following model described in Meyer et al. JCAP09(14')003

Intergalactic magnetic field

B < 1 nG $\sim 1 \text{ Mpc}$

- Importance of the inclusion of the mixing is evaluated based on the choice of the source, its distance, tested mass and coupling.
- Extragalactic background light absorption included

Milky Way magnetic field

 $B \sim 1 \mu G$ $L \sim 10 \text{ kpc}$

- Modelled with a turbulent and regular component
 [2]
- Mixing occurring in the coherent component of the Galactic magnetic field
- Several modelling options:
 Pshirkov et al. 11', Jansson
 & Farrar 12', Unger &
 Farrar 23'

Constraints on axion-like particles with the Perseus Galaxy Cluster with MAGIC, Batković, D'Amico et al. (MAGIC Collaboration), PDU, Volume 44, May 2024, 101425, https://doi.org/10.1016/j.dark.2024.101425

- NGC1275 Perseus Galaxy cluster
- Data (41.3 hrs) divided by the activity states
- Fit of the intrinsic spectrum (no ALPs):

EPWL (power-law with an exponential cutoff)

$$\Phi_{int}(E') = \phi_0^i \left(\frac{E}{E_0}\right)^{\Gamma_i} e^{\frac{E_i}{E_k^i}}$$

Figure 2: SED of three activity states of NGC1275 observed by MAGIC

Statistical framework

Evaluating the hypotheses on the existence of ALPs – null hypothesis assumes no ALP effects present

- Included magnetic fields: Perseus galaxy cluster, EBL absorption, Milky Way magnetic field
- For computing the ALPs exclusions, we introduce point-by-point computation of the correct coverage using the MC simulations

Results

Setting the 95% and 99% exclusion regions allows excluding the ALPs hypothesis at 2.03σ confidence level \rightarrow cannot claim the existence of ALPs

Obtained constraints agree with the ones set previously by other studies

Most stringent exclusions up to date for the masses $m_a = (40 - 70) \times 10^{-9} \text{ eV}$

Greatest sensitivity in the mass range $m_a = (40 - 400) \times 10^{-9} \, \mathrm{eV}$ reaching the photon-ALP coupling down to $g_{ay} = 3 \times 10^{-12} \, \mathrm{GeV}^{-1}$

Figure 3: Constraints on the ALPs parameter space set by MAGIC using NGC1275 data

Results

Setting the 95% and 99% exclusion regions allows excluding the ALPs hypothesis at 2.03σ confidence level \rightarrow cannot claim the existence of ALPs

Obtained constraints agree with the ones set previously by other studies

Most stringent exclusions up to date for the masses $m_a = (40 - 70) \times 10^{-9} \text{ eV}$

Greatest sensitivity in the mass range $m_a = (40 - 400) \times 10^{-9} \, \mathrm{eV}$ reaching the photon-ALP coupling down to $g_{ay} = 3 \times 10^{-12} \, \mathrm{GeV}^{-1}$

Figure 4: Constraints on the ALPs parameter space set by MAGIC using NGC1275 data in comparison to other studies

Constraints on ALPs with AutoMAGIC

- Team: Francesco Schiavone (UNI Bari, check his poster on CTAO ALPs study tomorrow), Ivana Batković, Michele Doro (UNI Padova), and Cyrus Walther (TU Dortmund)
- Goal is to obtain limits on ALPs by analysing data of blazars observed by MAGIC → planning to combine results with LST-1
- Considering spectra from different activity states of each source
- Using AutoMAGIC → proprietary software for semi-automatic analysis of MAGIC data
- Processing data of 3 blazars from 2014 2024 → two sources already analyzed

Motivation

- 1. No blazar studies from an array in the Northern hemisphere!
- 2. No studies with combined constraints from several sources!

First ALPs study with LST-1 data

Targets of interest: blazars – supermassive black holes in centers of galaxies – ultra-relativistic jet aligned with the line of sight

LST-1 dataset (Aug 20 – Feb 24):

- Mrk421 ~ 87 hrs
- Mrk501 ~ 24 hrs
- 1ES1959+650 ~ 14 hrs
- BL Lac ~ 32 hrs

Team: Ivana Batković, Giacomo
D'Amico (IFAE) and Michele Doro
(UNIPD)

Outline of the CTAO North (left), LST-1 telescope (up)

Constraints on ALPs by LST-1

Methodology

- Datasets are divided in groups using Bayesian block analysis.
- Spectral analysis is performed, while leveraging between number of bins and "smoothness" of the spectrum.

- Mrk421 ~ 87 hrs
- Mrk501 ~ 24 hrs
- 1ES1959+650 ~ 14 hrs
- BL Lac ~ 32 hrs

TOTAL: 73 Bayesian Blocks!

Constraints on ALPs by LST-1

Statistical framework

 Included magnetic fields: Helical and tangled jet magnetic field model by Potter & Cotter 2016 (Synchrotron self-Compton modelling framework), EBL absorption, Milky Way magnetic field

Constraints on ALPs by LST-1

Preliminary results

Figure 5: Preliminary constraints on the ALPs parameter space (95% and 99% exclusion limits left, 95% exclusion limit right), obtained with LST-1 data of M421, Mrk501, BLLac and 1ES1959+650.

Conclusions

- Several studies are on-going (AutoMAGIC and LST-1), to be concluded by the end of 2025/26
 - Add systematics related to energy reconstruction and magnetic fields
 - Analysis of the whole dataset processed with AutoMAGIC software
 - Compute the final exclusions on ALPs parameters and compare with the existing limits
- In general new constraints on ALPs are almost a daily news
- Ongoing search for axion and ALPs is in full power and with the upcoming experiments -> POSSIBILITIES ARE

(ALMOST) UNLIMITED

20th PATRAS
Tenerife. September 22-26. 2025
WORKSHOP
ON AXIONS

WORKSHOP ON AXIONS WIMPS & WISPS

Thank you for your attention!

Contact: ivana.batkovic@unipd.it

"Wiggles" vs. jumps

• We conclude that despite the initial idea about searching for the spectral irregularities, so-called "wiggles", our data is instead sensitive to sudden jumps in $P_{\gamma\gamma}$

 $P_{\gamma\gamma}$ of selected models along with the obtained CL in the ALPs parameter space, from: Abe et al., *Phys. Dark Univ.* 44, 101425, (2024)

Results – systematic uncertainities

Dependence of the constraints on the magnetic field modelling, from: Abe et al., *Phys. Dark Univ.* 44, 101425, (2024)

- Checks on the systematics: magnetic field modelling
- We repeat the analysis using the magnetic field model used in CTA, arXiv:2309.03712

	$B_0[\mu G]$	η	$\begin{bmatrix} n_0 \\ [cm^{-3}] \end{bmatrix}$	$n_2 \ [cm^{-3}]$	$\frac{r_{core}}{r_{core2}}[kpc]$	eta/eta_2
В	10	0.5	0.04	0.005	80/280	1.2/0.6
B _{alt}	t 25	2/3	0.05	0.004	57/278	1.2/0.7

Comparison of magnetic field models of the Perseus galaxy cluster magnetic field from our work (*Phys. Dark Univ.* 44, 101425, 2024) and Abe et al. <u>arXiv:2309.03712</u>

Results – systematic uncertainities

- Checks on the systematics: energy resolution of MAGIC
- We repeat the analysis, "adding" the +15% and -15% on the ALP effect on the spectrum of the source

Dependence of the constraints on the energy resolution, from: Abe et al., *Phys. Dark Univ.* 44, 101425, (2024)

Check of the impact of different Milky Way magnetic field models in the photon survival probability for Mrk 421:

