20th Patras Workshop on Axions, WIMPs, and WISPs

DarQ:

Search for Dark Photons Using Direct Excitations of Superconducting Qubits

K. Watanabe^A, S. Chen^B, H. Fukuda^A, T. Inada^C, C.Kawai^A, Y. Mino^C, T. Moroi^{A,D}, K. Nakazono^A, T. Nitta^D, A. Noguchi^{E, F, G}, R. Sawada^C, T. Sichanugrist^A, S. Shirai^E, K. Terashi^C

ADept. of Phys. Univ. of Tokyo, BDept. of Phys. Univ. of Kyoto, CICEPP Univ. of Tokyo, DQUP (WPI), KEK, ERIKEN Center for Quantum Computing (RQC), FKomaba Institute for Science(KIS), Univ. of Tokyo, GInamori Research Institute for Science(InaRIS)

Dark Photon

- \triangleright Light mass $< \mathcal{O}(eV) \rightarrow$ behave as a coherent wave

Superconducting Qubit

- Nonlinear LC circuit
- Large dipole moment
- Excited by a coherent electric field
- Tunable across wide frequency ranges

 ~ O (1) GHz

Using superconducting qubits as tunable sensors for dark-photon-induced electric fields

Dark Photon Search using Superconducting Qubit – Basic Idea

 When a dark photon passes through the metal wall, it is converted into an electric field at the frequency corresponding to its mass.

$$f \sim \frac{mc^2}{h}$$

- The electric field frequency matches the qubit resonance frequency.
 - \rightarrow The qubit is excited.
- Sweep the qubit resonance frequency to find the peak of the excitation rate.

Dark Photon Search using Superconducting Qubit – Expected Excitation Rate

When the qubit resonance frequency = the dark photon mass, the expected excitation rate p_{qe} is

$$p_{ge}(t) \approx 0.12 \times \kappa^2 \cos^2 \Theta \left(\frac{\epsilon}{10^{-11}}\right)^2 \left(\frac{f_{01}}{1 \text{ GHz}}\right) \left(\frac{t}{100 \text{ } \mu\text{s}}\right)^2 \left(\frac{C}{0.1 \text{ pF}}\right) \left(\frac{d}{100 \text{ } \mu\text{m}}\right)^2 \left(\frac{\rho_{DM}}{0.45 \text{ GeV/cm}^3}\right)$$

 κ : Effective electric field Electric field converted from the dark photon

Θ: Angle between the effective electric field and the capacitance pad

$$\rightarrow \cos^2\Theta = \frac{1}{3}$$

 ϵ : kinetic mixing

assume random polarization

 f_{01} : Qubit resonance frequency i.e. target mass

t: Effective search time = $\sqrt{T_1T_{2r}}$

C: Qubit capacitance

d: Distance between qubit capacitance pads

 $\rho_{\rm DM}$: Local energy density of dark matter ~ 0.45 GeV/cm³

Dark Photon Search using Superconducting Qubit – Demonstration

3 demonstration short runs (Qubit-A, Qubit-B and Qubit-C)

Dark Photon Search using Superconducting Qubit – Future Search Region

Enabling wide-range search in a practical time with sensitivity beyond the CMB limits

$$T_1 = 100 \,\mu s$$

$$T_{2r} = 10 \ \mu s$$

$$\kappa = 1$$

$$C = 0.1 \, \text{pF}$$

$$d = 100 \, \mu \text{m}$$

Acknowledgement

- Engineering Support Section, Okinawa Institute of Science and Technology Graduate University (OIST)
 Takuya Miyazawa
- Members of the University of Tokyo Materials Advanced Research Infrastructure and Data Hub Center (Takeda CR)
- Members of the Cryogenic Quantum Platform, Cryogenic Science Center, University of Tokyo Hiroshi Fukuyama, Ryo Toda
 - ...Experiments with the dilution refrigerator were performed at the facilities of the Cryogenic Research Center, University of Tokyo.
- Prototype Laboratory, Department of Physics, Faculty of Science, University of Tokyo Shigemi Otsuka, Togo Shimozawa
- Members of the Superconducting Quantum Circuit Prototyping Facility, National Institute of Advanced Industrial Science and Technology
- École polytechnique fédérale de Lausanne Shingo Kono