

Towards a Cavity Haloscope with a GHz Tuning System Using Galvanically Contacted Transmon Qubits

20th Patras workshop on Axion, WIMPs and WISPs

09/23/2025

Speaker: Kan Nakazono (the University of Tokyo)

DarQ Collaboration

Outline

• Main idea (based on Patras 19th talk, arXiv:2505.15619)

Status for the next run

Introduction of DarQ experiment

arXiv:2505.15619

Search for Dark Photon Dark Matter with a Mass around $36.1~\mu eV$ Using a Frequency-tunable Cavity Controlled through a Coupled Superconducting Qubit

K. Nakazono,^{1,*} S. Chen,² H. Fukuda,¹ Y. Iiyama,³ T. Inada,³ T. Moroi,^{1,4} T. Nitta,⁴ A. Noguchi,^{5,6,7} R. Sawada,³ S. Shirai,^{5,6} T. Sichanugrist,¹ K. Terashi,³ and K. Watanabe¹ (DarQ Collaboration)

DarQ-Lamb experiment

Using a superconducting qubit as a cavity frequency tuner

Lamb shift (dispersive shift)
$$\propto \frac{g^2}{\Delta}$$
coupling constant $g \sim \mu E$...detuning $\Delta = \omega_q - \omega_c$

Bias current tuning test (2024)

Dark photon DM search around 36.1 μ eV in 2024

arXiv:2505.15619

Dark photon DM search around 36.1 μ eV in 2024

arXiv:2505.15619

For the Next run...

1 high sensitivity or 2 broaden frequency tuning range

This poster

Status

Wider frequency tuning range ↔ Stronger the qubit-cavity coupling

(physically)

Simulation... chip position sweep

Outputs... Cavity frequency and Form factor

Center of the cavity (Maximum interaction)

Center of the cavity (Maximum Energy loss)

Introduction: DarQ collaboration

DarQ collaboration

"Dark matter search using Qubits"

Officially starting this year (The first meeting was held this March)

URL: https://sites.google.com/view/darq-experiment

Thank you for listening!

Back Up

Search for dark photon

Dark photon

- Mixed with photon by kinetic mixing parameter χ
- Converted to the ordinary photon
 - Frequency of photons corresponds to dark photon's mass $\hbar\omega \approx m_{DM}c^2$

In the µeV to meV range...

- Long de Broglie wavelength and high number density
- →Phase is coherent (like classical wave)
- →Enable to apply coherent weak electric field detection technology!
- Overlapping mass range with well-motivated QCD axions

This regime

Cavity haloscope

- Accumulating powers and enhancing signals near the resonance frequency of a cavity
- Cooling down the resonator to cryogenic temperatures (Dilution Refrigerator: ~10mK)
- Reducing background noise (blackbody radiation)

Goal: Broadband Frequency Search ↔ Wide frequency tuning of a cavity

Signal power, noise power and variables

$$P_{s} = \eta \chi^{2} m_{\gamma'} \rho_{DM} V_{eff} Q_{L} \frac{\beta}{1+\beta} L(f, f_{0}, Q)$$

$$P_{noise} = k_{B} b T_{sys} / \sqrt{N}$$

Variable	explanation	value	others
$m_{\gamma'}$	frequency	$\sim 8.74\mathrm{GHz}$	each measurement
ρ	DM density	$0.45\mathrm{GeV/cm^3}$	from (Asztalos et al., 2001)
β	coupling constant	~ 0.3	each measurement
T_{sys}	system noise	$7.9\mathrm{K}$	Y-factor measurement
V_{eff}	effective volume	$3.14\mathrm{cm}^3$	$V \times formfactor$
Q_L	(Loaded) Quality factor	~ 5000	each measurement
η	attenuation factor	1.02	SG filtering
N	number of data	100	per measurement
b	bandwidth	$200\mathrm{Hz}$	bandwidth of spectrum analyzer

 χ : kinetic mixing parameter \propto sensitivity of the detector