Update 14/03/2025

FCC Naples

Work of: Lucrezia Borriello (Istituto Nazionale di Fisica Nucleare Napoli)

SiPM 6x6 at Gain 28 Calibration with PLP Led

I tried to calibrate the 6x6 sipm with measurements taken with the PLP laser to see if they matched the calibrations made previously

this waveform is the case where with the lens system I was able to put myself in a range of a few photons

istogramma run 420 event 6457

Analysis FCC Naples Lucrezia Borriello Update 14/03/2025

SiPM 6x6 at Gain 28 Calibration with PLP Led

From this we understand that we can only derive a calibration from amplitudes and not from integrals, since with integrals we do not have a definition of peaks

SiPM 6x6 at Gain 28 Calibration with PLP Led few photons and led power 15 Method A: pick id

Analysis FCC Naples Lucrezia Borriello Update 14/03/2025

SiPM 6x6 at Gain 28 Calibration with PLP Led with few and led power 6

SiPM 6x6 at Gain 18 Calibration with PLP Led few photons and led power 15

430 run Ampiezza con taglio 10-100 e piedistallo sottratto sipm 6x6 gain 28 filtrato

In this case we are not able to find picks, even with stringent cuts SiPM 6x6 at Gain 18 Calibration with PLP Led few photons and led power 6

Max vs Peak Position at Gain 18 run_432

N.B. I deleted this point which was wrong

Calibrations SiPM 6x6 Gain 28 with other method

Another method is to base on the hypothesis that the n_{pe} follows a Poissonian statistic so we have that:

$$A = \alpha n_{pe} \qquad = \alpha < n_{pe} >= \alpha \mu$$

$$\sigma_{A} = \alpha \sigma_{pe} = \alpha \sqrt{\mu} = \sqrt{\alpha} \sqrt{\langle A \rangle}$$

$$\frac{\sigma_A^2}{\langle A \rangle} = \alpha$$

In this case we measure at different power of the led

8

SiPM 6x6 Calibration with PLP Led few photons with method B

From Amplitude to Charge

From the fit of the amplitude we get: $A = p_0 + p_1 n_{pe}$

To have the conversion in charge, we fit the downslope front of our waveform.

We fit with $e^{-\frac{x}{\tau}}$, and we get factor τ .

Taking as a function:

 $f(x) = A e^{-\frac{x}{\tau}}$

And going to do the integral

$$I = \int_{0}^{3\tau} f(x) dx = A\tau (1 - e^{-3})$$

In this case I use the Sum of the waveform

We get the factor that we need to switch from amplitude to charge

Analysis FCC Naples Lucrezia Borriello Update 14/03/2025 So our conversion in photon number is $A = p_0 + \alpha p_1 n_{pe}$

1200 F Amplitude [mV] Amplitude [mV] 400 350 1000 300 Dati sperimentali Dati sperimentali 800 Chi2/NDF = 1122.85 Chi2/NDF = 127.54 Tau1 = 13.86 +/- 0.09 ns Tau1 = 13.55 +/- 0.09 ns 250 Tau2 = 154.19 +/- 0.48 ns Tau2 = 156.42 +/- 0.49 ns Int/amp range (5-1500 ns)= 147.73 ns Int/amp range (5-1500 ns)= 146.90 ns 600 200 150 400 6x6 gain 28 6x6 gain 18 100 200 50 0 n -50 500 -500 1000 1500 -500 500 1000 1500 0 0 Time [ns] Time [ns]

Sum Waveform Fit run_478

Sum Waveform Fit run_477

Summary SiPM 6x6 Calibration with PLP Led with method A

SiPM	Gai n	Gain amplitude conversion	Power	$p_0 + error$	$p_1 + error$ [mV/ n_{pe}]	τ(ns) + error(ns)	conversio n factor charge $\tau(1 - 0,0497)$	Integral/a mplitude
6x6	28	25.10	15	3,7 ±0,2	3,36±0,02	154,19±0,48	146,53	147,73
6x6	28	25,12	6	0,45±0,1	3,33±0,02			
6x6	18	7.04	15	-	-	156 42:0 40	4.40.04	146,90
6x6	18	7,94	6	0,20±0,06	1,25±0,01	100,42±0,49	140,04	

Summary SiPM 6x6 Calibration with PLP Led with method B

SiPM	Gain	Gain amplitude conversion	$p_0 + error$	$p_1 + error$ [mV/ n_{pe}]	$\tau(ns)$ + error(ns)	conversion factor charge $\tau(1 - 0,0497)$	Integral/am plitude
6x6	28	25,12	-8±1	3,78±0,05	154,19±0,48	146,53	147,73
6x6	18	7,94	-1,0±0,1	1,39±0,01	156,42±0,49	148,64	146,90

Sum Waveform Fit run_483

Last week I had problems fitting the waveform for the various gain of the sipm 3x3, in this case I was using a double exponential+constant, but this was obviously not right

 $(1/(1+[0]^{TMath::Exp(-(x-[1])/[2]))^{3} + [4]^{TMath::Exp(-(x-[5])/[6]) + [7])$

To try to solve the problem with the fit I changed my fit function from a double exponential to a sigmoid+exponential+ constant

Summary SiPM 3x3 Calibration with PLP Led with method B range fit 5-600

SiPM	Gain	Gain amplitude conversion	p ₀ + error	$p_1 + error$ [mV/ n_{pe}]	τ(ns) + error(ns)	conversion factor charge $\tau(1 - 0,0497)$	Integral/am plitude
3x3	28	25,12	-1,8±0,2	1,38±0,02	56,21±0,00	53,41	50,52
3x3	18	7,94	-0,23±0,02	0,441±0,006	53,33±0,07	50,67	51,71
3x3	-	-	0,004±0,001	0,0423±0,0007	44,15±0,09	41,95	50,24

-Range Fit -100-600

-The fit is obtained by using a sigmoid+exponential+decreasing exponential (which simulates the behaviour of the RC) as a trait function on the Sum of all wf

(([0]/(1+TMath::Exp(-(x-[1])/[2]))+[3])*(x<=[1]) + ([6]*TMath::Exp(-(x-[1])/[4])+[3]-TMath::Exp(-(x-[1])/[5]))*(x>[1]))

Analysis FCC Naples Lucrezia Borriello Update 14/03/2025

istogramma run 483 event 5487

NEXT STEPS

-Perform a fit on single event and not on the sum of wf -Mabye perform a fit on a single event with a moving average to reduce noice

Crystal measurements in Sasso's laboratory Part 2

I took measurements on the crystals in the Sasso laboratory with a range of 200-700 nm, in the plot there are the measurements taken on 24 February (old) and the new measurements taken on 28 February (new)

Lambda 35

Crystal measurements in Sasso's laboratory Part 2

Crystal measurements in Sasso's laboratory Part 2

Backup Slides

Analysis FCC Naples Lucrezia Borriello Update 14/03/2025

Summary of PLP Measurements

20/01/2025	sipm 6x6	preamp 2			
misure led PLP	run	gain	configurazione le	power	tı
	417	28	nn	15	
misura undershoot	419	28	2x5	15	n
	420	28	4x5	15	
	421	28	4x5	10	
	422	28	4x5	6	
	423	28	4x5	5	
	sipm 6x6	gain			
ho ripreso una misu	436	28	4x5	13	
21/01/2025	sipm 6x6	preamp 2			
misure led PLP	run	gain	configurazione le	power	tı
molti fotoni	424	28	3x5	15	
ancora più fotoni	425	28	3x3	15	
misura undershoot	426	28	3x3	15	
molti fotoni	427	18	3x3	15	
ancora più fotoni	428	18	2x3	15	
ritorno a pochi fotor	429	18	4x5	15	
	430	18	4x4	15	
	431	18	4x5	10	
	432	18	4x5	6	
	433	18	4x5	5	
	434	18	4x5	13	
misura undershoot	435	18	6x2	15	

	sipm 3x3	preamp 1			
misure led PLP	run	gain	configurazione l	epower	trigger led PLP
~30 fotoni	439	28	3x4	15	
	440	28	3x4	13	
	441	28	3x4	10	
	442	28	3x4	6	
	443	28	3x4	5	
~100 fotoni	444	28	1x2	15	
undershoot	445	28	1x2	15	
~70 fotoni	446	18	1x2	15	
~30 fotoni	447	18	2x4	15	
	448	18	3x4	15	
	449	18	3x4	13	
	450	18	3x4	10	
	451	18	3x4	6	
	452	18	3x4	5	
undershoot	453	18	1x2	15	
	sipm 3x3	preamp passivo			
misure led PLP	run	gain	configurazione l	epower	trigger led PLP
in teoria massimi fo	454	-	1x2	15	
	455	-	1x2	13	
	456	-	1x2	10	
	457		1x2	6	
	458		1x2	5	

Summary SiPM 6x6 Calibration with LED CAEN

SiPM	Gain	Gain amplitude conversion	Method	$p_0 + error$	$p_1 + error$ [mV/ n_{pe}]	τ(ns)	conversion factor charge $\tau(1 - 0,0497)$
6x6	28	05.40	A	0,4±0,1	3,46±0,02	100.00	105 7
6x6	28	20,12	В	15±1	3,49±0,006	132,20	125,7
6x6	18	7.04	A	1,31±0,06	1,161±0,005	100 70	4447
6x6	18	7,94	В	3,0±0,4	1,156±0,003	120,72	114,7
6x6	24	15.05	A	0,20±0,05	2,27±0,01	140 70	140.0
6x6	24	10,00	В	17,5±0,7	2,169±0,003	149,72	142,3

Summary SiPM 3x3 Calibration with LED CAEN

SiPM	Gain	Gain amplitude conversion	Method	$p_0 + error$	$p_1 + error$ [mV/ n_{pe}]	$\tau + error(ns)$	conversion factor charge $\tau(1-0,0497)$
3x3	28	25,12	В	-1,4±0,4	1,236±0,002	46,9±0,2	44,61
3x3	24	15,85	В	-0,9±0,2	0,785±0,002	45,2±0,2	42,93
3x3	18	7,94	В	-0,3±0,1	0,401±0,002	46,3±0,6	44,02
3x3	Passive Preamp	-	В	0,064±0,005	0,0425±0,0009	18,3±0,3	17,41

Analysis FCC Naples Lucrezia Borriello Update 14/03/2025

Summary SiPM 3x3 Calibration with PLP Led with method B range fit 5-1500

SiPM	Gain	Gain amplitude conversion	p ₀ + error	$p_1 + error$ [mV/ n_{pe}]	τ(ns) + error(ns)	conversion factor charge $\tau(1 - 0,0497)$	Integral/am plitude
3x3	28	25,12	-1,8±0,2	1,38±0,02	51,60±0,04	49,03	41,63
3x3	18	7,94	-0,23±0,02	0,441±0,006	53,40±0,04	50,74	42,49
3x3	-	-	0,004±0,001	0,0423±0,0007	44,02±0,04	41,83	48,98

Gain conversion factor at various temperatures

$$V_{OV}(26^{\circ}C) = V_{OP}(25^{\circ}C) - V_{BD}$$

$$V_{BD}(T^{\circ}) = V_{BD}(25^{\circ}) + 0.034 \frac{V}{^{\circ}C} \delta T \Longrightarrow \text{from } 25^{\circ}\text{C}, \text{ or in case of temperature increase}$$

$$G(26^{\circ}C) = \alpha V_{OV}(26^{\circ}C) = calculated \rightarrow \alpha = \frac{G(26^{\circ}C)}{V_{OV}(26^{\circ}C)}$$

$$G(23^{\circ}C) = \alpha V_{OV}(23^{\circ}C)$$

We then have the 26°C gain and we want to know how much is the gain at 23°C:

SiPM	V _{OP} (V) tabulated 25°C	$V_{BD}(V)$ tabulated 25°C	V _{OV} (26°)	G(26°C)	α	<i>V_{OV}</i> (23°)	<i>V_{BD}</i> (23°)	G(23°C)
6x6	40,7	38	2,67	3,461	1,30	2,77	37,93	3,59
3x3	44	39	4,97	1,236	0,25	5,07	38,93	1,26

Study of C/S Variation in angular scan with PWO

- We studied the 2D histogram of the integrals of channel with the filter dominated by contribution cherenkov on the integral of channel without filter dominated by scintillation.
- Then we performed a linear fit, since if there were only scintillation the slope would always be equal depending on the angle. I have done this for all the runs of the angular scan

Study of C/S Variation in angular scan with BGO and BSO

Setup:

- SiPM Hamamtsu S14160-6050HS: -photosensitive area 6x6 mm² -number of pixels= 14331
- SiPM Hamamatsu S14160-3010PS:
 photosensitive area 3x3 mm²
 number of pixels= 89984
- Preamplifier CAEN serie A1423B: -Gain range from +18dB to +54dB
- CAEN Led Driver SP5601
- CAEN NIM HV Power supply module N1419ET
 4 Ch Reversible 500 V/200 µA
- Tektronix Oscilloscope MSO66B:
 - 1,5 GHz Bandwidth
 - 6 Analog channels

SiPM 6x6 at Gain 28 Calibration method A)

From the fit of the amplitude we get: $A = p_0 + p_1 n_{pe}$

To have the conversion in charge, we fit the downslope front of our waveform.

We fit with $e^{-\frac{x}{\tau}}$, and we get factor τ .

Taking as a function:

 $f(x) = A e^{-\frac{x}{\tau}}$

And going to do the integral

$$\int_0^{3\tau} f(x)dx = A\tau(1-e^{-3})$$

We get the factor that we need to switch from amplitude to charge

Waveform Fit

So our conversion in photon number is $A = p_0 + \alpha p_1 n_{pe}$ Analysis FCC Naples Lucrezia Borriello Update 14/03/2025

Amplitude [mV]

Calibrations SiPM 6x6 Gain 28 with method B)

Another method is to base on the hypothesis that the n_{pe} follows a Poissonian statistic so we have that:

$$A = \alpha n_{pe} \qquad = \alpha < n_{pe} >= \alpha \mu$$

$$\sigma_A = \alpha \sigma_{pe} = \alpha \sqrt{\mu} = \sqrt{\alpha} \sqrt{\langle A \rangle}$$

$$\frac{\sigma_A^2}{\langle A \rangle} = \alpha$$

In this case we measure at different power of the led

37