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INTRODUCTION

Plasma discharge devices have recently demonstrated their potential for compact particle beam manipulation. Building upon the Active Plasma Lens [1] and its extension to curved
geometries (Active Plasma Bending [2]), new studies have revealed that chicane-like configurations can support sub-betatron oscillations of the beam. Motivated by this observation,
the novel concept of the Plasma Discharge Undulator (PDU) is introduced. The PDU consists of a sequence of transversely displaced jointed plasma capillaries, carrying a high-current
discharge. The resulting azimuthal magnetic field focuses the beam, while the periodic transverse displacement of the equilibrium axis acts as a geometric forcing term. This yields a
well-defined oscillation at a wavelength Appy distinct from the natural betatron wavelength Ag. By proper injection, collective betatron oscillations can be suppressed, leaving only the
forced Appy beam centroid oscillation. This approach eliminates the intrinsic K-spread limitation of plasma undulators, achieving a narrow undulator strength distribution while
preserving strong plasma focusing for beam matching. The theoretical framework, single-particle and beam dynamics analyses, first estimates of radiation emission from the PDU and
preliminary particle-in-cell studies of segmented capillaries are presented. The PDU thus offers a pathway toward miniaturized, tunable, full-plasma-based radiation beamlines, with

enhanced control over beam quality and radiation properties.

MOTIVATION

CONCEPT
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