

Observation of improved electron beam quality from a laser plasma accelerator by post acceleration beam shaping

Lodewyk Steyn LPGP, Orsay France

European Advanced Accelerators concepts worshop 2025, Elba, Italy

https://arxiv.org/abs/ 2506.18047

Achieving high quality beams is a general goal of laser wakefield acceleration

• Eupraxia

• FEL

Multistage acceleration

Arie Irman Talk Wed PS5 17:20 Coxinel FEL

High quality beam in our context

High Charge

High mean energy

Low energy spread

Low emittance

Low Divergence

Small Spot size

Repetition rate

Repeatability

$$Q > 100 \ pC$$
 $\overline{E} > 100 \ MeV$
 $\frac{\Delta E}{E} < 1\%$
 $(\epsilon_{\perp} < 1 \ mm \ mrad)$
 $\theta_{rms} < 1 \ mrad$
 $\sigma_{\perp} \approx 10 \ \mu m$
 $f > 1 \ Hz$
Stability shot to shot

Achieving high quality beams is a general goal of laser wakefield acceleration

- Source for applications
 - Eupraxia
 - FEL
 - Multistage acceleration

High quality beam in our context

- High Charge
- High mean energy
- Low energy spread
- Low emittance
 - Low Divergence
 - Small Spot size
- Repetition rate
- Repeatability

$$egin{aligned} \mathbf{Q} &> \mathbf{100} \ pC \ \hline E &> 100 \ MeV \ & \frac{\Delta E}{E} < 1\% \ (\epsilon_{\perp} < 1 \ mm \ mrad) \ \theta_{rms} < 1 \ mrad \ \sigma_{\perp} pprox 10 \ \mu m \ f > 1 \ Hz \ Stability \ shot to \ shot \end{aligned}$$

Ionisation combined with tailored density profile is useful to control electron injection

- Ionization injection allows high charge at low laser intensity
 - $a_0 \gtrsim 1.4 \text{ ionize } N^{5+} \to N^{6+} + e^-$
- Possible at low gas densities
 - $n_e \approx 10^{18} cm^{-3}$
- Low nonlinearities in laser-plasma interaction
- Straightforward tailoring of density profile in gas cells
 - Making and manipulating plateaus and density ramps

Examples Laser wakefield results

Self-Injection

Ionization Injection

- Colliding Pulse Injection
 - Ionization Injection assisted by tailored-density

Tailored-density Injection

- Truncated Channel Injection
- This Work

Energy (MeV)

Picskley PRL 2024 Hofi Channel

M Kirchen PRL 2021 Gas cell

Couperus Nat Comm 2017 Gas jet

Plasma lenses are used to decrease divergence after acceleration

P. Chen, Part. Accel. 1987 Lehe PoP 2015

Thaury N. Com 2015

Chang PR Applied 2023

Marini PR AB 2024

« Adiabatic Matching » i.e. Emittance preservation

Floettmann PR AB 2014

Sears PR AB 2010

Dornmair 2015

Ariniello PR AB 2019

Plasma Dechirper is used to decrease energy spread

D'Arcy PRL 2019

Wu PRL 2019

Shpakov PRL 2019

DRACO Laser

- $\lambda_0 = 0.8 \, \mu m$
- 2.5 J
- 24 µm FWHM spot size
- 30 fs FWHM duration
- Modelled as a Flattened Gaussian beam
 - o N=8,
 - $\circ \ w_0 = 14 \, \mu m$

Experimental setup and laser parameters

- Injection on the Nitrogen downramp
- Acceleration in the Hydrogen Plasma in second compartment.
- No intermediate focusing equipment between source and Lanex.

Pollock PRL 2011 Drobniak RSI 2025

High spectral brightness beams observed at different plasma densities

Angular charge density [pC/mrad]

Spectra of 107 shots plotted with increasing peak energy values for $n_e = 10^{18}$ cm⁻³

$$\sigma_{p_y} \approx (\theta_y)_{rms} \bar{\gamma}$$

$$\approx 0.2 \, m_e c$$

All spectra obtained for the same input parameters

Laser focus and down-ramp location fluctuations lead to injected charge variations

$$Q_{max}=100~pC$$
 , $ar{E}=100~MeV$ $Q_{min}=50~pC$, $ar{E}=160~MeV$

See Poster

CFD: Creating a downramp and long plasma tail

OPENFOAM density profile to SMILEI (PIC code)

Detail of Outlet Density Profile

Electron trapping is controlled by laser focusing in the nitrogen density downramp

The electron beam is accelerated with a chirp

- Longitudinal forces impose a space-energy chirp
- Transverse forces generate betatron oscillations

Transition from laser to beam driven wakefield occurs in the downramp

- Laser intensity and Plasma decrease simultaneously
- Transition for laser to beam excitation of wakefield
- Longitudinal field has become decelerating

Dechirper and plasma lens occur in the long plasma tail

Transverse

- Wakefield is dominated by beam driven effects
- The longitudinal field is dechirping due to wakefield from the front of the beam
- Rear of the beam experiences higher transverse forces

Transverse momentum spread is reduced in down ramp and long plasma tail

- $x: 1.5 \rightarrow 2 \ mm$ Growth of σ_{p_y}
- $x: 2 \rightarrow 4 \ mm$ Betatron oscillations
- x > 4 mm Decay lens effect

Dechirping results in higher spectral intensity : Q_{FWHM} \uparrow , ΔE_{FWHM} \downarrow

- x = 1.5 4mm Acceleration (up to 180 MeV)
 - \circ Full Width Half Maximum ΔE grows in this zone
- x>4 mm ΔE decreases
- x>10 mm Q inside ΔE increases

Emittance is conserved for FWHM electrons

 $\varepsilon_{n,rms} = \frac{1}{m_o c} \sqrt{\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2}$

- Phase space shows that FWHM electrons are at the front of the bunch.
- $x < 6 \, mm$, full emittance is conserved which means adiabatic matching.
- x > 6 mm, the full emittance is not conserved
- $x: 6 \rightarrow 9 \ mm \ \epsilon^{FWHM}$ is constant
- $x: 9 \rightarrow 14 \ mm \ \epsilon^{FWHM}$ increases as Q_{FWHM} increases.
- Thus in LPT the emittance is:
 - conserved in the front of the bunch.
 - slightly degraded in the rear of the bunch.

Summary

Experimental observation of high quality beam with:

- 180 MeV
- 40 pC [FWHM]
- Divergence 0.5 mrad
- Low Transverse Momentum Spread
- $\Delta E = 6 \text{ MeV}$

Shape beam
 Longitudinally
 Transversely

Simulation reproduces closely experimental observation

Perspectives:

- Redesign for improved quality and stability
- Use of source for applications

Preprint

Observation of laser plasma accelerated electrons with transverse momentum spread below the thermal level

https://arxiv.org/abs/2506.18047

Related Posters

Independent Control of Electron Injection and Acceleration in a Laser Plasma Accelerator –

A. Panchal et al

Enhancing Electron Beam Quality Through
Customized Density Gradients in Laser Wakefield
Acceleration

- L Steyn et al

Plasma Lens effect

Plasma Dechirper

Acknowledgements

Brigitte Cros
Francesco Massimo
Ioaquin Moulanier
Mohamad Masckala
Oleksandra Khomyshyn
Pierre Desesquelles
Charles Ballage
Ovidiu Vasilovici

LIDYL CEA Université Paris Saclay

A Panchal S. Dobosz Dufrénoy

École Polytechnique
Laboratoire Leprince-Ringuet
CNRS

A. Beck

received support from the European Union's Horizon 2020 Research from innovation programme under grant agreement no. 871124 Laserlab-Europe.

This work was granted access to the HPC resources of TGCC and CINES under the allocation 2023-A0170510062 (Virtual Laplace) made by GENCI.

HZDR

P. Ufer
F.M. Herrmann
M. LaBerge
S. Schobel

Y.-Y. Chang

A. Irman

U. Schramm

