

EAAC2025

Argonne Wakefield Accelerator

Sept 24, 2025
Argonne National Laboratory
jp@anl.gov
https://www.anl.gov/awa

JOHN POWER for the Argonne Wakefield Accelerator collaboration

Outline

What is Structure Wakefield Acceleration?

Motivation: SWFA-based applications

The Argonne Wakefield Accelerator (AWA) Facility

Progress: SWFA recent milestones

Roadmap: keeping the progress going

Where does Structure Wakefield Acceleration fit in?

The 4 Advanced Accelerations Concepts

Structure Wakefield Acceleration (SFWA)

Beam-Structure Interaction (Drive beam + Main beam)

COLLINEAR WAKEFIELD ACCELERATION (CWA)

 A. Zholents et al, "A high repetition rate millimeter wavelength accelerator for an X-ray free-electron laser", 2025 JINST 20 P01023

Application: Light Source

Application: High Energy Physics

TWO BEAM ACCELERATION (TBA) – like CLIC

- W. Gai, J.G. Power, and C. Jing, "Short-pulse dielectric two-beam acceleration", J. Plasma Phys., vol. 78, 339–345.
- **G. Ha**, et al., "" Status of the experimental demonstration of GW power generation from THz-TBA", WEP083, NAPAC2025 (2025)
- R. Margraf-O'Neal et al., "Simulated performance of a compact water-window FEL driven by a structure wakefield accelerator", LINAC2024, THPB005

STRUCTURE WAKEFIELD ACCELERATION: TBA

G. Ha, et al., TUPL057, IPAC2023 (2023)

STRUCTURE WAKEFIELD ACCELERATION: TBA

50 m

BC1

(LK2)

BC₂

SWFA X-band and K-band linac

linearizer

(LK1)

- 1 GeV, high brightness

P. Piot, "Design of a Water-Window Free-Electron Laser Using the Two-Beam Acceleration Scheme", THURS. 16:40 - 17:00, Bonaparte 2 (Hotel Hermitage)

to drive an FEL

dechirper

undulator

(LK3)

- water-window regime [2,4] nm
- Energy/pulse [100, 300] μJ
- Short [10's of fs]
- High-power (GW-scale)

R. Margraf-O'Neal et al., "Simulated performance of a compact water-window FEL driven by a structure wakefield accelerator", in Proc. LINAC2024, Chicago, IL, USA, Aug. 2024, pp. 637-640. doi:10.18429/JACoW-LINAC2024-THPB005

XRF gun

X-band linac (LX1)

STRUCTURE WAKEFIELD ACCELERATION: CWA

High repetition rate multi-user X-ray FEL facility

A. Zholents et al, "A high repetition rate millimeter wavelength accelerator for an X-ray free-electron laser", 2025 *JINST* 20 P01023

10 Beamlines

- main beam
- Independently tunable
- Repetition rate of up to 20 kHz
- X-ray spectrum: 1.5 keV to 10.2 keV

Photon energy $\hbar\omega$ versus undulator parameter K calculated for an undulator with a period of 12.6 mm and different beam energies shown above the lines.

STRUCTURE WAKEFIELD ACCELERATION: TBA

Two Beam Acceleration

Linear Collider

- □ 2013 P5. 3 TeV Linear Collider concept.
 - High Power ~1 GW
 - o 320 MV/m unloaded gradient
 - 267 MV/m loaded gradient
 - o 200 MeV/m real estate gradient

- □ 2023 P5. 10 TeV Linear Collider concept.
 - 500 MeV/m real estate gradient

18km

1.5 TeV (x2)

ARGONNE FLEXIBLE LINEAR COLLIDER

W. Gai, J.G. Power, and C. Jing, J. Plasma Phys., vol. 78, 339–345. Modular design (easily staged)

e⁺ e⁻ 267 MeV/m of loaded gradient (200 MeV/m effective gradient)

150 GeV Module

NETWORK OF AMERICAN BEAM TEST FACILITIES

Experimental demonstration of emerging accelerator science

U.S. advanced and novel accelerator beam test facilities

[C. Clarke et al 2022 JINST 17 T05009, https://iopscience.iop.org/article/10.1088/1748-0221/17/05/T05009]

National Laboratories

Universities

The Argonne Wakefield Accelerator (AWA) Facility

Beam Test Facility to enable novel acceleration

Witness RF photoinjector (15 MeV)

- Provides two-beam capability
- Bright beams for low-energy experiments

Argonne Cathode Test Stand (2-4 MeV)

- Cathode research and diagnostics
- Physics of high-gradient breakdown

Experimental Switchyard

- Highly reconfigurable
- 6D phase space manipulation

Laser

Photoinjector laser

- 100 mJ (800nm), 10 mJ (262nm),
- 300 fs 6 ps (UV)
- temporal shaping

Diagnostic laser

81.25 MHz (1550 nm)

MILESTONE: CWA

demonstration of >5 transformer ratios

The transformer ratio relates to efficiency

$$R = \frac{E_{acc}}{E_{dec}}$$

- To achieve $R>2 \rightarrow$ bunch shaping
- Shaping with an emittanceexchange (EEX) beamline
- Two experiments demonstrated R>2:
 - PWFA using a plasma R~7
 - SWFA using a structure R~6

High R with shaped beams

PWFA

R. Roussel et al. PRL (2020)

SWFA

Q. Gao, *et al, PRL* (2018)

Staging of acceleration

- Demonstration (simplified) two-stage SWFA
- Scalable to any number of accelerating module

X-band 11.7 GHz structures

70 MeV/m acceleration in each stage

300 MW, 150 MeV/m acceleration single stage

C. Jing, et al, Nucl. Instrum. Meth. A., 898, 72-76 (2018)

Why Short Pulse RF? (Part I): TBA

3e-7 breakdowns/pulse/m, 100 MV/m, 200ns

A. Grudiev, S. Calatroni, and W. Wuensch, Phys. Rev. ST Accel. Beams 12,102001 (2009)

W. Wuensch, et al., "A demonstration of high-gradient acceleration", PAC'03

*W. L. Millar, et al, "High-Power Test of Two Prototype X-Band Accelerating Structures Based on SwissFEL Fabrication Technology, IEEE Tran. NS, 70, 1, (2023),1-19.

High Power RF

Highest peak power as 565 MW from a train of eight bunches with a total charge of 355 nC

J. Picard et al., PRAB 25, 051301 (2022)

Dielectric X-band PETS (200 MW) to rf load (a) copper chromium center flange dielectric absorber holder rf absorber coupler supporting ring copper jacket tube holder rf flange

DOI: 10.1103/PhysRevAccelBeams.23.011301

Metallic X-band PETS (400 MW)

J. Shao et. al.,

https://accelconf.web.cern.ch/ipac2019/papers/MOPRB069.pdf

High fields

Demonstrated accelerating fields:

- ~300 MV/m in accelerating structures (~500 MV/m surface field)
- ~400 MV/m in RF gun (~600 MV/m surface field)

Current work includes

- Design and testing of new structures
- Fundamental studies on high fields

Photoemission from a high-field RF gun

HIGH-GRADIENT & LOW DARK CURRENT

Gun milestones

- 0.4 GV/m on photocathode, 0.6 GV/m surface
- BDR ~4e-6 (estimated)
- Ultra low dark current (<1pC per RF pulse)

FIRST BEAM FROM PHOTOCATHODE GUN

~3 MeV 387 MV/m (confirmed)

~6 MeV Boosted with linac

J. Shao et. al., 10.1103/PhysRevLett.115.264802

W.H.Tan et. al., Phys. Rev. Accel. Beams 25, 083402, August 2022 (2022)

Why Short Pulse RF? (Part II)

Motivation #2: beyond the CLIC scaling law (<15ns)

BDR vs. pulse length doesn't follow the CLIC empirical scaling law in the short-pulse regime $(\tau \sim 15 \text{ ns})$

SWFA ROADMAP

How do we get from HERE to a linear collider?

Fundamental R&D

Demonstrated 2025

- Simplified staging
- >5 transformer ratio
- 0.4 GV/m field
- BIAR regime

•

Technology Demonstrators

Integration (2026-2030)

- 100 MeV high brightness injector
- 500 MeV demonstrator

Applications

Applications (>2030)

- 1 GeV WW-FEL
- 5 GeV Multiuser XFEL
- 10 GeV Hard X-ray FEL
- 380 GeV High Factory
- 10 TeV linear collider

Fundamental R&D

PI: Xueying Lu (NIU/ANL)

Dark current, multipactor, and breakdown in the short-pulse regime

Example: MTM studies

BIAR breakdown

Primary pulse not interrupted

Time (ns)

50

Secondary pulse not present

Fundamental R&D

Beam dynamics in the Transient Regime in the short-pulse regime

Zoom-in around the mostly filled region

- If driven by 9 ns pulse, Xgun is under-filled and staying in the transient state during the full RF duration.
- E-field on cathode is changing cycle by cycle.
- Broad high-gradient operational window.

G. Chen, et al.,: arXiv:2503.09575. doi: 10.48550/arXiv.2503.09575.

MOVING FORWARD: Technology Demonstrators

Injector: 100-MeV, 100 pC, 100 nm (Near term ~5 years)

Gun milestones demonstrated

- 0.4 GV/m on photocathode, 0.6 GV/m surface
- BDR ~4e-6 (estimated)
- Ultra low dark current (<1pC per RF pulse)

2025-27

Acceleration to 10 MeV

- new Xgun design with removable cathode stalk
- Add booster linac
- Local emittance compensation
- Beam characterization
- Design of "shovel-ready" 100
 MeV injector

2028-31

Acceleration to 100 MeV

- Add staging to 100 MeV
- Characterize bright electron beam

Technology Demonstrators

0.5 GeV demonstrator

- Demonstrate key technologies of SWFA based linear collider
- Fits into AWA's existing bunker

Critical Technology Elements

- 1. GW power level
- 2. 300MV/m gradient
- 3. Full staging (drive beam distribution)
- 4. Fast kicker

Gun

Applications

THz Accelerating Tube

THz Acc (700 MV/m)

Light Source: 400 MeV EUV light source

QMs

Led by an International collaboration

Structure Fabrication

Linac (~40 MeV)

Drive beam source

(20 nC, 40 MeV)

200 GHz(ps) (C) 1.00

THz Gun

Preparation toward GW Power Generation

400 GHz Compatible drive bunch train (1 nC/bunch) Later will be 16 bunches

H. Kong, et al., Scientific Reports 13, 3207 (2023)

U.s. DEPARTMENT OF Argonne National Laboratory is a Senergy U.s. Department of Energy laboratory managed by UChicago Argonne, LLC.

28/34

Applications

Light Source: 1 GeV WW-FEL

A CWA-based High repetition rate multi-user X-ray FEL facility

A-STAR Undulators Beamlines 4.5 GeV e-gun 200 kHz 1 GeV SRF linac Accelerator for drive and witness bunches Array of collinear XFEL undulators wakefield accelerators and beamlines

Demonstrated

- Fabricated 182 GHz CWA
- Measured beam wakes

MOVING FORWARD: Applications

linear colliders

Strawman Design (2013)

200 MeV/m real estate gradient

10 TeV Wakefield Collider Design Study

S. Gessner et al., "Design Initiative for a 10 TeV pCM Wakefield Collider" https://arxiv.org/abs/2503.20214

How can SWFA contribute?

- 1.All SWFA
- 2. Hybrid SWFA-PWFA
- 3. Injector for L/PWFA

Applications

SWFA e⁺ e⁻ linear collider options

A Linear Collider Vision for the Future of Particle Physics (CERN) https://arxiv.org/abs/2503.19983

Global Collider Roadmap

- **1. ILC (Japan)**: 250 GeV 1 TeV (SRF, 31.5 MeV/m).
- 2. CLIC (CERN): up to 3 TeV (NCRF, ~100 MeV/m).
- 3. Plasma/Structure-Wakefield Colliders: long-term R&D for 10 TeV+.

1. Fully SWFA-Based Linear Collider.

at the second state of the

2. Hybrid SWFA – L/PWFA Linear Collider.

3. SWFA-Based Injector into Plasma (L/PWFA) Linear Collider. (Bubble 30/100 μm ↔ Frequency 3-10 THz)

X. Lu et al., "RF acceleration with short pulses: Breaking the high-gradient barrier," in Proc. 16th Int. Particle Accelerator Conf. (IPAC'25), Taipei, Taiwan, 2025, doi: 10.18429/JACoW-IPAC2025-MOYD3.

Applications

Can SWFA achieve 500MeV/m of geographical gradient?

180 MV/m

Developing X-band short-pulse structure

	-		
4.	-W	single	e cell

Structure Parameters	Designed Values	
Freq.	11.7 GHz	
Filling time	6 ns	
Structure length	30 cm	
Input Power	600 MW	
Gradient	180 MV/m	

Ka-band structure

- 1. f = 11.7*3 = 35.1 GHz
- 2. Scale (R/Q and Vg are the same)
- 3. Given P=1.2GW. then gradient=764 MV/m.
- 4. Given fill factor is 0.7, then **geographical gradient will be** 535MeV/m.

535 MV/m

Challenge: Small aperture. (ref. CLIC 30GHz has aperture 2.4mm~3.2mm.)

Ka-band PETS

$$P = \frac{1}{4} \frac{\omega}{v_g} \frac{r}{Q} L^2 I^2 F^2 \left(\frac{1 - e^{-\alpha L}}{\alpha L} \right)^2$$
 1200 MW

Scale 11.7*3=35.1GHz, If P=1.2GW, then Q=16.7nC/bunch (assuming F~1). **Challenge:** Small aperture only 17.6mm/3=5.9mm.

G. Andonian, "Higher order modes in accelerating structures for flat beams", WED., 12:00 - 12:30,

B. Higuera-Gonzalez, Proposal to control BBU instability in SWFA by using adjustable rectangular dielectric waveguides. **TUES.**, 17:00 - 17:20, Bonaparte 2 (Hotel Hermitage)

Scale x3

SWFA SUMMARY 100-MeV bright beams Demonstrated staging, AWA W/ ongoing upgrades high transformer ratio stepping-stone facility * 19'0.4 GV/m field Integration Collider applications to supports a user facility small-scale AWA energy Higgs-factory collider - Higgs-factory collider upgrade facility (e.g. water window FEL) Fundamental R&D Technology Demonstrators plications 34/34

Upgrade to AWA-II

(funding dependent)

UPGRADE PATH

AWA: Ongoing upgrades

Quality upgrades

- Brightness. Emittance improvement by RF symmetrized gun (AWA) & RF symmetrized cavities (LBNL)
- <u>Stability.</u> New RF synchronization system (LBNL BACI), RF Station stability project (APS RF group)

Capabilities upgrades

- <u>Extended Bunch shaping.</u> (SLM based Laser shaping, TDC shaping, EEX multi-leaf Collimator, etc.)
- <u>Machine Learning.</u> For machine control, virtual diagnostics and physics (EPICS upgrade w/ APS Controls group)

AWA-II: High energy version of AWA

- Drive beam 65 MeV → ~150 MeV
- Tighter focus for acceleration research
 - High-quality ~1 GeV TBA demonstrator (roadmap)
 - Allows SWFA to enter GV/m regime
 - High beam density needed for PWFA
- Increase the size the experimental switchyard

-26

FY21.

