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Abstract

Plasma accelerators have demonstrated significant milestones, from producing 10 GeV electron beams in 
wakefield acceleration, high-gain free-electron laser operation, energy boosting of electrons, to reaching 
stable (ultra-short, nC-class) proton acceleration that enable studies of ultrahigh dose-rate radiobiology. 
Now, the community is setting sight on integrating plasma acceleration deep into future particle 
colliders and applications, such as a potential 10 TeV center-of-mass collider, Higgs factory, injection 
into rings for next-generation light sources, stable high-repetition rate operations, among others, which 
continue to set demanding research challenges on particle beam quality, repetition rate and reliability.
This presentation will discuss the current capabilities and latest trends in modeling plasma 
accelerators and integrated modeling of beamlines with plasma elements. With a need for detailed 
kinetic modeling from design to operations, a comprehensive and coordinated approach is needed to 
cover and optimize anything from the source to the end of the beam’s lifetime. An important enabler are 
new technologies from Exascale Computing, providing (GPU) accelerated computing for accelerator 
and plasma physicists from laptops to supercomputers. Advances in open source modeling 
ecosystems and coupling to AI/ML with standardized data exchange now enable user-friendly 
model-building for integrated accelerators, combining theory, kinetic modeling and fast surrogate models.
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Modelization of Plasma Accelerators in the Exascale Era

● Community Modeling with BLAST
○ The Beam, Plasma & Accelerator Simulation Toolkit (BLAST)
○ Engines for accelerator start-to-end modeling
○ Building a community ecosystem
○ Standardization & Interoperability

● Exascale Technologies for Particle Accelerator Modeling
○ Industry trends and opportunities
○ Accelerating day-to-day modeling: from laptops to supercomputers
○ Exascale Modeling examples in plasma acceleration

● Connecting Scales & Data with Machine-Learning Surrogates
○ Building models from wakefield simulation data 
○ Connecting experiments & simulations
○ Combining with differentiable modeling to solve hard, inverse problems



Community Modeling with BLAST
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There Are Many Choices to Plasma Accelerator Modelization
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This requires an ecosystem of models
⇒ share models & data between codes
⇒ works best when standardized

e.g., initial designs, optimization & operations e.g., stability proofs, exploration, ML training data

e.g., RZ geometry, quasi- and electro-static 
approximation, fluid background, ML data 
surrogate

Generation

…

Interaction Point

…
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BLAST is a Comprehensive Simulation Toolkit
for Accelerator Physics
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RF stage(S)RF Gun LPA/LPI Plasma Stage

Imagine a future, hybrid particle accelerator, e.g., with RF and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

buildup of electron clouds, 
secondary electron yield

modeling of radiative & 
space-charge effects

Goal
Start-to-end model-
ing in an open 
software ecosystem.

Quasistatic PIC
separates timescale:
plasma wake & beam evol.

Reduce Dynamics / 
Geometry

A Friedman et al., Part. Accel. (1992)
DP Grote et al., NIMA (1998)
J Qiang et al., PRSTAB (2006)
J-L Vay et al. CSD (2013)
A Huebl et al. (2015)
R Lehe et al., CPC (2016)
J-L Vay et al., NIMA (2018)

A Ferran Pousa et al., JPConf. (2019)
S Diederichs et al., CPC (2022)
A Huebl et al., NAPAC22 and AAC22 (2022)
A Ferran Pousa et al., PRAB (2023)
M Thévenet et al., EAAC23 (2023)
O Shapoval et al. PRE (2024)
Sandberg et al. PASC24 (2025)

R Lehe et al. PASC25 (2025)
J-L Vay et al. PRE (2025)

time-evolving electromagnetic 
or -static PIC



Beam
Beam
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BLAST
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Ring

BLAST is a Comprehensive Simulation Toolkit
for Accelerator Physics
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RF stage(S)RF Gun LPA/LPI Plasma Stage

Imagine a future, hybrid particle accelerator, e.g., with RF and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

buildup of electron clouds, 
secondary electron yield

modeling of radiative & 
space-charge effects

2014

single 
codes

Goal
Start-to-end model-
ing in an open 
software ecosystem.

Quasistatic PIC
separates timescale:
plasma wake & beam evol.

Reduce Dynamics / 
Geometry

A Friedman et al., Part. Accel. (1992)
DP Grote et al., NIMA (1998)
J Qiang et al., PRSTAB (2006)
J-L Vay et al. CSD (2013)
A Huebl et al. (2015)
R Lehe et al., CPC (2016)
J-L Vay et al., NIMA (2018)

A Ferran Pousa et al., JPConf. (2019)
S Diederichs et al., CPC (2022)
A Huebl et al., NAPAC22 and AAC22 (2022)
A Ferran Pousa et al., PRAB (2023)
M Thévenet et al., EAAC23 (2023)
O Shapoval et al. PRE (2024)
Sandberg et al. PASC24 (2025)

R Lehe et al. PASC25 (2025)
J-L Vay et al. PRE (2025)

time-evolving electromagnetic 
or -static PIC



Beam
Beam

3D

IMPACT-T

Codes

BLAST
CPU-only

IMPACT-Z

Warp

FBPIC

Wake-T

Storage Ring

Linac (or Booster Ring)Source Injector

Transfer Line

IP IP

Ring

BLAST is a Comprehensive Simulation Toolkit
for Accelerator Physics
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RF stage(S)RF Gun LPA/LPI Plasma Stage

A Friedman et al., Part. Accel. (1992)
DP Grote et al., NIMA (1998)
J Qiang et al., PRSTAB (2006)
J-L Vay et al. CSD (2013)
A Huebl et al. (2015)
R Lehe et al., CPC (2016)
J-L Vay et al., NIMA (2018)

WarpX

HiPACE++

ImpactX

BLAST
CPU & GPU

Imagine a future, hybrid particle accelerator, e.g., with RF and plasma elements.

s-based PIC
uses s instead of t as
independent variable
+ symplectic maps for 
accelerator elements

Quasistatic PIC
separates timescale:
plasma wake & beam evol.

buildup of electron clouds, 
secondary electron yield

time-evolving electromagnetic 
or -static PIC

Reduce Dynamics / 
Geometry

modeling of radiative & 
space-charge effects

2014

2025

single 
codes

integrated
ecosystem

A Ferran Pousa et al., JPConf. (2019)
S Diederichs et al., CPC (2022)
A Huebl et al., NAPAC22 and AAC22 (2022)
A Ferran Pousa et al., PRAB (2023)
M Thévenet et al., EAAC23 (2023)
O Shapoval et al. PRE (2024)
Sandberg et al. PASC24 (2025)

R Lehe et al. PASC25 (2025)
J-L Vay et al. PRE (2025)

Goal
Start-to-end model-
ing in an open 
software ecosystem.

Integrated through
Standards & Workflows

Data

Lattice

Input

Lasers

Optimize

AI/ML

PALS



Standardization & Interoperability Can Provide
Productivity, Reproducibility and are Enablers for ML 
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A Huebl et al., DOI:10.5281/zenodo.591699 (2015);  DP Grote et al., Particle-In-Cell Modeling Interface (PICMI) (2021);  LD Amorim et al., GPos (2021)
M Thévenet et al., EAAC23, arXiv:2403.12191 (2023);  A Ferran Pousa et al., DOI:10.5281/zenodo.7989119 (2023);  RT Sandberg et al., IPAC23, 
DOI:10.18429/JACoW-IPAC-23-WEPA101 (2023);  C Mitchell et al.,  A Community Effort Toward a Particle Accelerator Lattice Standard (PALS), TUP004 in 
NAPAC25 (2025)

Particle-In-Cell
Modeling Interface

open Particle Mesh Data 
standard

Code A

Code B

...

Particle Accelerator Lattice 
Standard (PALS)

https://doi.org/10.5281/zenodo.591699
https://doi.org/10.5281/zenodo.7989119
https://doi.org/10.18429/JACoW-IPAC-23-WEPA101


a Community PIC Code on Exascale Technology

Applications
laser-plasma physics,
particle accelerators, extreme
light sources, fusion devices & plasmas, …

Award–Winning Code & Science

Particle-in-Cell
● electromagnetic or electro/magnetostatic
● 1-3D, RZ+, spherical

Push 
particles

Deposit 
currents

Solve fields

Gather fields

 

 

 

 

● time integration:
explicit, implicit

Portable, Multi-Level Parallelization
• GPUs & CPUs
• Desktop to supercomputer

Scalable & Standardized
• Python APIs, openPMD data
• In situ processing
• Open community ecosystem

International Contributors incl. private sector
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J-L Vay et al., NIMA 909.12 (2018)
L Fedeli, A Huebl et al., SC22, DOI:10.1109/SC41404.2022.00008 (2022)

Detailed Physical Models
• Full documentation, benchmarks, examples
• Easy-to-use boosted frame
• collisional, atomic & fusion processes
• PIC-fluid hybrid, and much more

https://doi.org/10.1109/SC41404.2022.00008


ImpactX Leverages WarpX to Model Whole Beamlines

Applications
Beam-dynamics in transport lines, Linacs, Rings,
Colliders, Final Focus (BDS), e.g.,

Portable, Multi-Level Parallelization
• GPUs & GPUs
• Desktop to supercomputer
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A Huebl, C Mitchell et al., NAPAC22 and AAC22 (2022) and NAPAC25 (2025)
C Mitchell et al., HB2023, THBP44 and TUA2I2 (2023)
J Qiang et al., PRSTAB (2006);  RD Ryne et al., ICAP2006 ICAP2006 (2006)

Electrostatic Particle-in-Cell
  evolve beam relative to a reference particle

● particle advance: symplectic maps
● collective effects: space charge, CSR, ISR
● also: rapid envelope tracking

efficient modeling of large scales 
(e.g. km) for full beamlines

User-friendly
• Python API, openPMD data
• In situ processing
• Open community ecosystem

preview:
lattices 

from
PALS

Selected, Recent Features
• exchange beams w/ wakefield sims (openPMD)
• new: ML surrogate models
• new: static plasma lenses (tapered)

CPU

A100 GPU

LBNL BELLA Hundred-Terawatt Undulator (HTU)



BLAST Codes Cover Wakefield Collider
Modeling from Source to Interaction Point
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Acceleration & TransportGeneration

…

Interaction Point

…



Detailed Modeling of Injection Physics
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Acceleration & TransportGeneration

…

Interaction Point

…

1

Two-stage injection+acceleration
with a plasma mirror

2 3

1st stage Interaction with the 
plasma mirror

2nd stage

L Fedeli, A Huebl et al., SC22, ACM Gordon Bell Prize for WarpX (2022)

M. Thévenet et al., Nat. Phys., 12.4 (2016)

0.5 nC (peak)
1.7 nC (total)

https://docs.google.com/file/d/11jMiSKneUllpIkhlopcTzzD7G79q06me/preview


Detailed Modeling of Injection Physics
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1

Two-stage injection+acceleration
with a plasma mirror

2 3

1st stage Interaction with the 
plasma mirror

2nd stage

L Fedeli, A Huebl et al., SC22, ACM Gordon Bell Prize for WarpX (2022)

M. Thévenet et al., Nat. Phys., 12.4 (2016)

0.5 nC (peak)
1.7 nC (total)

Acceleration & TransportGeneration

…

Interaction Point

…

A success story of a multidisciplinary, 
multi-institutional team!

Computers:
● 69K GPUs

on Frontier (OLCF)
● 7.3M CPU cores

on Fugaku (RIKEN)

68,608 GPUs of 
First Exascale

Machine

7,299,072
CPU Cores



In Situ Visualization of the first 15 stages:

Acceleration & TransportGeneration

…

Interaction Point

50 Multi-GeV LPA Stages in 3D

…

Optimization and 3D Verification of Staging

On the fly focusing lens tuning using e- beam Twiss 
parameters enables emittance preservation.

1 10 20 30 40 50
stage number

Relative energy spread:
flat at 0.005% after few stages

1 fC

J-L Vay et al., PoP 28.2, 023105 (2021)
WarpX ECP MS FY23.1 & FY23.2 (2023);  T Barklow et al., JINST (2023)
A Ferran Pousa et al., IPAC23, TUPA093 & PRAB (2023);  CB Schroeder et al., JINST (2023) 16

Computer: 256 GPUs for 8h 
on Perlmutter (NERSC)

• Plasma channels: 28cm, 3cm gaps
• linear thick lens (3 mm)
• negligible beam charge

Work by our team at LBNL

https://docs.google.com/file/d/1XyBsdYzWtQgUChFKvbocjsUnfMP5HlHe/preview


In Situ Visualization of the first 15 stages:

Acceleration & TransportGeneration

…

Interaction Point

50 Multi-GeV LPA Stages in 3D

…

On the fly focusing lens tuning using e- beam Twiss 
parameters enables emittance preservation.

1 10 20 30 40 50
stage number

Relative energy spread:
flat at 0.005% after few stages

1 fC

J-L Vay et al., PoP 28.2, 023105 (2021)
WarpX ECP MS FY23.1 & FY23.2 (2023);  T Barklow et al., JINST (2023)
A Ferran Pousa et al., IPAC23, TUPA093 & PRAB (2023);  CB Schroeder et al., JINST (2023) 17

Work by Carl Lindstrøm et al.Novel Chromatic Staging Optics

C. A. Lindstrøm et al., Chromatic optics for staging of plasma accelerators using 
nonlinear plasma lenses (manuscript in prep., EAAC25 talk on Mon)
B. Chen et al., ABEL: A Start-to-End Simulation and Optimisation Framework for 
Plasma-Based Accelerators and Colliders (EAAC25 Talk on Tue)

HiPACE++ ImpactX

Optimization and 3D Verification of Staging

https://docs.google.com/file/d/1XyBsdYzWtQgUChFKvbocjsUnfMP5HlHe/preview


Acceleration & TransportGeneration

…

Interaction Point

…

Beam-Beam Modeling at the Interaction Point

Work by Arianna Formenti et al.
COM e–e+

WarpX can now simulate flat, 
spherical, round and asymmetric 

beams in linear colliders:
ILC, C3, wakefield, HALHF, …

and is exercised for & advanced 
towards circular colliders:

FCC-ee, Muons

New Capabilities Added
● spectral integrated Green function (IGF) solvers
● luminosity diagnostics: 1D as a function of ECOM 

and 2D as a function of Ene1 & Ene2
● binary collisions (linear Compton scattering, 

linear Breit Wheeler) and virtual photons
● simulate incoherent pair production via 

Bethe-Heitler and Landau-Lifshitz processes
● linear compton scattering is used to simulate 

gamma-gamma colliders: electron-laser scattering

Many beam-beam effects
💔 disruption (beam-beam parameter)
🔦 photon emission
👯 e+e– pair creation 
🎱 scattering 
💪hadron photoproduction

💥 what are the actual luminosities? 
☁ what are the actual backgrounds?

18

during collision:
disrupted beams

Future Circular Collider International Linear Collider



Acceleration & TransportGeneration

…

Interaction Point

…

Beam-Beam Modeling at the Interaction Point

19

electron 
density

positron
density

magnetic field 
streamlines

ECOM = 10 TeV | N = 1.2 * 109 | σz = 8.5 um 
eᐩe⁻ vs. e⁻e⁻
round: σ* = 1.55 nm | D = 1.22 | χ = 970
flat: σ*x = 6 nm | σ*y = 0.4 nm | Dx= 0.15 | Dy= 2.3 | χ = 470   

lu
m

in
os

ity
 s

pe
ct

ra
→ results used by particle and detector physicists

CB Schroeder et al., JINST (2023) see backup slides for detailed benchmark studies

Preliminary simulations with wakefield lepton beams at
Work by Arianna Formenti et al.

Beam-Beam 3D
• today: 2hrs on 32 GPUs
• high-resolution + collisional 

physics could need 1000x 
more



Exascale Technologies for Particle 
Accelerator Modeling



Power-Limits Seeded a Cambrian Explosion of Compute Architectures
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AMD

GPUs

ARM

CPUs

Supercomputers

Frontier (USA): 1.3 EFlops 
• AMD GPUs

Fugaku (Japan): 0.44 EFlops 
• Fujitsu ARM CPUs

Lumi (Finland): 0.38 EFlops 
• AMD GPUs

Leonardo (Italy): 0.24 EFlops 
• Nvidia GPUs

Aurora (USA):  1.0 EFlops 
• Intel GPUs

El Capitan (USA): 1.7 EFlops 
• AMD GPUs

Jupiter Booster: 0.8 EFlops 
• Nvidia GPUs     (Germany)

Personal Computers
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Power-Limits Seed a Cambrian Explosion of Compute Architectures

without tiling

with tiling

Field-Programm
able Gate Array 

(FPGA) 

AMD
ARM

Application-Spec
ific Integrated 
Circuit (ASIC)

Quantum-Circuit
?

potential future 

distribute one 
simulation

often 100s 
of coresover 10,000s of 

computers each

optional: for detailed simulations
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Laser-Plasma Acceleration of Ions: Many 3D 
Laser-Solid Simulations will even need Post-Exascale 

Supercomputers
Laser-Matter Interaction
with complex targets

Work with Andreas Kemp (LLNL)

• Cost and feasibility of fast ignition of ICF targets with 
energetic ions depends directly on laser-to-ion coupling 
efficiency

• Complex target geometries require modeling at scale – 
enabled by GPU based explicit particle-in-cell

Laser-Ion Acceleration from solids
Work with Davide Terzani (LBNL)

• investigating energy scaling for
laser-ion acceleration experiments with 
future laser systems (more on this soon)

Exascale Capabilities for laser-ion 
acceleration:
● 3D short-pulse up to 10s of nc
● 2D for 10s of ps, >>100nc

30-50% of OLCF's

A Kemp et al., Phys. Plasmas 32, 093102 (2025)



Connecting Scales & Models with 
Machine-Learning



Building Ultra-Fast Plasma Stage Models from WarpX Data

RT Sandberg et al., IPAC23, DOI:10.18429/JACoW-IPAC2023-WEPA101 (2023)
RT Sandberg et al., PASC24 Best Paper (2024) 25

Central BLAST Code Interoperability: Combine Plasma & RF Accelerator Elements for start-to-end modeling
example: high-quality, first-principle WarpX data (1fC witness beam) used for ImpactX ML surrogate training

WarpX start-to-end
simulation
256 GPUs

1 simulation / 5.1 hours

LPA + Transport Optimization
with 1000s of evaluations

ImpactX with 
WarpX-trained NNs

1 GPU
2-4 simulations / sec

tightly-coupled LPA-neural networks inside ImpactX

Neural 
network

Neural 
network

≈750x estimated cost savings with 
in-the-loop ML optimization workflow



We Exploit our High-Quality HPC Data for ML-Boosted Collider Design

RT Sandberg et al., IPAC23, DOI:10.18429/JACoW-IPAC2023-WEPA101 (2023)
RT Sandberg et al., PASC24 Best Paper (2024)   A Dhamrait, R Lehe et al., in preparation 26

Central BLAST Code Interoperability: Combine Plasma & RF Accelerator Elements for start-to-end modeling
example: high-quality, first-principle WarpX data (1fC witness beam) used for ImpactX ML surrogate training

WarpX start-to-end
simulation
256 GPUs

1 simulation / 5.1 hours

LPA + Transport Optimization
with 1000s of evaluations

ImpactX with 
WarpX-trained NNs

1 GPU
2-4 simulations / sec

tightly-coupled LPA-neural networks inside ImpactX

Neural 
network

Neural 
network

Advances BLAST capabilities towards:
● rapid start-to-end designs
● digital twins & "real-time" feedback

Also works for non-LPA segments:
e.g., IOTA nonlinear lens  [IPAC23]

What's next?
● Collective effects: space charge, wakes, 

feedback, etc. – coming soon!
● Use as plasma model in system codes?

≈750x estimated cost savings with 
in-the-loop ML optimization workflow
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Build Your Own In-the-loop Machine Learning Surrogates
Beyond Single-Particle Tracking Maps

These and your own ML ideas can now easily be implemented (Python) & studied in BLAST 
codes WarpX/ImpactX - see our documentation and detailed examples on how to get started 🚀

��

https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://impactx.readthedocs.io/en/latest/usage/examples/pytorch_surrogate_model/README.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
https://warpx.readthedocs.io/en/latest/usage/workflows/ml_dataset_training.html
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Experimental data
ML model Predict experimental outcome for 

unexplored parametersSimulation data

Many potential reasons:
• Simplifying physics assumptions in simulations
• Imperfect knowledge of experimental conditions
• Uncalibrated experimental diagnostics
Need addressing, to train a predictive ML model on combined data.

Training Inference

T. Boltz et al., arXiv:2403.03225 (2024)       R Lehe et al., manuscript in preparation

Simulations generally reproduce the correct trends, but are not always in quantitative agreement 
with experimental observations.

Disagreement between experiments and simulation can be overcome 
by learning an empirical calibration

Learned by gradient descent,
while training the ML model.

 

 

Laser focal position

calibrate
simulations

Laser focal position

 
predict where
exp. data is 

sparse

e.g., performance 
for a different 
temporal laser 

profile Laser focal position

 



Surrogate Models are Connecting Experimental & Simulation Data
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BELLA Control room
Dashboard

ML 
model

HTTPS connection

NERSC Spin
Platform for continuously-
running science services

Backend 
software

Automatically
retrain model

Database of 
experiments
and simulations

NERSC Perlmutter
GPU supercomputerDatabase 

connection

Automatically launch 
new simulations

Send data at the 
end of simulations

Database 
connection

BELLA experiments

Detect new shots and
extracts relevant data

R Lehe et al., manuscript in preparation

We will soon publish a framework for ML integration between experiments & simulations.



Embedding NNs in Simulations can Solve Hard, Inverse Problems
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"Hard-to-Scan": Multi-Dimensional Optimization Example

Output:
beam emittance

Input:
accelerator parameters

Further applications: self-calibrating beamlines, 
uncertainty quantification, surrogate-training, 
digital twin training, …

"Hard-to-Measure": Reconstruction Example

J.-P. Gonzalez-Aguilera et al., WEPA065 at IPAC2023 (2023)    J. Kaiser et al., PRAB 27, 054601 (2024)               
A Hoover et al., PRR 6, 033163 (2023)   R. Roussel et al., PRL 130 (2023) and PRAB 27, 094601 (2024)
A. Huebl et al., TUP101 at NAPAC25 (2025)   W.S. Moses et al., Enzyme, SC22 (2022)

Why Differentiable Modeling?
Differentiability is essential for many AI/ML 
techniques, e.g., in rapid optimization and 
neural network training (backpropagation).

Simulation
Input Output

Simulation   

→DifferentiableRegular

Contributed space charge to recent work 
(Cheetah), studied scaling laws, and started to 
implement differentiable models in BLAST.



31

Gradient-Tracking in Differentiable Simulations Quickly Requires a 
lot of Memory or Intermediate Data Storage

Credit: Remi Lehe & Arjun Dhamrait, Gregoire Charleux, Axel Huebl, Chad Mitchell, Edoardo Zoni    Code: Cheetah (DESY/KIT/SLAC/ANL/LBNL)

Overall memory use graphs for a full simulation with 3 space charge kicks

Drift

drift drift drift drift

kick kick kick
from space charge solver

s
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Gradient-Tracking in Differentiable Simulations Quickly Requires a 
lot of Memory or Intermediate Data Storage

Credit: Remi Lehe & Arjun Dhamrait, Gregoire Charleux, Axel Huebl, Chad Mitchell, Edoardo Zoni    Code: Cheetah (DESY/KIT/SLAC/ANL/LBNL)

Overall memory use graphs for a full simulation with 3 space charge kicks

Just finished the investigation of 
scaling laws for differentiable PIC 

modeling! – A Dhamrait et al., 
manuscript in preparation



Exascale Technologies
● Make an impact in day-to-day accelerator modeling:

from laptops to supercomputers

Machine-Learning: Modelization from Data
● Fast, very detailed, specialized models
● Connects experiments & simulations
● Could assist to solve hard, inverse problems

Start-to-End: Community Modeling
● Beam, Plasma & Accelerator Simulation Toolkit (BLAST)
● Comprehensive, multi-physics tools for model building
● Fully open, active community on codes & standards:

○ contribute online and in open meetings:
Q&A, benchmarks, new features, …

○ new integrations in optimizers, system codes, ML

Summary

github.com/BLAST-WarpX
github.com/BLAST-ImpactX
github.com/Hi-PACE
github.com/AngelFP/Wake-T
github.com/picmi-standard
github.com/openPMD     openPMD.org
github.com/optimas-org
github.com/campa-consortium/pals
campa.lbl.gov, blast.lbl.gov
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Excellent agreement between WarpX and other codes with spherical nanobeams

[Yakimenko et al. Phys. Rev. Lett. 122, 190404 (2019)]

● ECOM = 250 GeV 
● N = 8.7 * 108  
● spherical beams: σz=σx=σy= 10 nm
● zero emittance
● low disruption D = 0.001
● max quantum parameter χ = ϒ ~ 1700

https://doi.org/10.1103/PhysRevLett.122.190404


Excellent agreement between WarpX and Guinea-Pig with flat ILC beams

● ECOM = 250 GeV 
● N = 2x1010

● σz = 300 µm
● σ*x = 516 nm | σ*y = 7.7 nm
● ϵx = 5 µm | ϵy = 35 nm
● flat beams 
● significant disruption Dx = 0.30, Dy = 24.39
● max quantum parameter χ = ϒ ~ 0.3 

WarpX ~ 1.5 h Guinea-Pig > 48 
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[The International Linear 
Collider: Report to 
Snowmass 2021

https://cds.cern.ch/record/2815947
https://cds.cern.ch/record/2815947
https://cds.cern.ch/record/2815947


Model Level of Realism: Benchmarking Interaction Point Physics
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SourceStaging of ~800 elements>10 TeV IPStaging of ~800 elementsSource

Spherical ~nm beams
● low beam disruption
● significant pair creation
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Flat ILC Beams 250 GeV COM*
● high beam disruption
● no significant pair creation

*We also tested: spherical, round and 
asymmetric beams incl. HALHF parameters

WarpX

https://doi.org/10.1103/PhysRevLett.122.190404
https://docs.google.com/file/d/194nYCQ6sIgmiceTU8gI3ZQmTZPHtEmur/preview


PICMI enables (90%) same input script with different codes

39

WarpX 
(momentum-conserving gather)

WarpX

WarpX (γ=10)

PWFA FACET Example



Optimization with in-the-loop 
ML surrogate model

≈752x estimated cost savings with
in-the-loop ML optimization workflow

40

1500 GPU hours simulation
x 1000 iterations

+ 1500 GPU hours validation simulation

= 1 501 500 GPU hours

Previously (Estimate)

450 GPU hours training simulation
+ 3 GPU hours PyTorch training

x 15 stages
+ 10 GPU seconds ImpactX+NN

x 1000 iterations
+ 1500 GPU hours validation simulation

= 1 998 GPU hours



● R6→R6 surrogate: intentional choice, for the detailed study of chromatic effects
○ high level of detail, arbitrary low-charge phase spaces, conserves the phase of each particle
○ drop-in replacement for single-particle, first-principle models

41

In-the-loop Machine Learning Surrogates
Beyond Single-Particle Tracking Maps

These and your own ML ideas can now easily be implemented (Python) & studied in BLAST 
codes WarpX/ImpactX - see our documentation and detailed examples on how to get started 🚀

Examples to include collective effects in ML surrogates:
● 🔨 double down: trajectory + collective beam parameters R6+m→R6+m

○ how: expose additionally m collective beam parameters to ML model for various beam charges
○ note: very costly learning phase, unless constrained (e.g., only change 1D current profile)

● 📽 project: learn & predict phase spaces
○ how: learn & predict selected 2D phase spaces for various beam charges
○ note: less detailed; resampling loses phase, e.g., for tune calculations in rings
○ e.g., Emma et al, PRAB 21, 112802 (2018);  Edelen et al., TUPS72, IPAC24 (2024)

● 🌱 simplify: work with beam moments and simpler distributions
○ how: learn & predict only collective beam parameters, learn simpler distributions (e.g., KV)
○ note: little detail; resampling loses phase, e.g., for tune calculations in rings
○ e.g., Edelen et al., PRAB 23, 044601 (2020);  Garcia-Cardona & Scheinker, PRAB 27, 024601 (2024)



Approach
o Enabling automatic differentiation: the compiler infers the code to calculate gradients 

from the existing code for f(X)
o Leverage & enhance the existing high-performance BLAST codes

By slightly restructuring the existing ImpactX code base, we developed a first prototype that 
supports both forward-mode and reverse-mode differentiation for envelope-based modeling, 
including space charge effects.

Preparing BLAST for Differentiable Modeling

42
A. Huebl et al., NAPAC25 poster/paper TUP101 (2025);    W.S. Moses et al., “Scalable Automatic Differentiation of Multiple Parallel Paradigms through Compiler 
Augmentation”, SC22 (2022)   DOI:10.1109/SC41404.2022.00065;   R.D. Ryne et al., Proc. EPAC (2004), Lucerne, Switzerland: KV Beam in a FODO Channel

Example: Gradient-free 
(Nelder-Mead) and 
gradient-based (Conjugate 
Gradient) optimization of 
quadrupole strengths and 
necessary number of 
simulations to perform.



Initial → final
phase space
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Training Data 
generation with WarpX
● 1 plasma column
● 15 diluted beams
● 404 A100 GPUhrs 

(once!)

Surrogate models learn initial ⇨ final phase space map
from data generated by a high-fidelity WarpX simulation

ex
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Surrogate model: Generic Transport Map
supports beams with
✔arbitrary profiles
✔chromatic effects
✗collective effects

Notes:
● intentional choice
● very easy to modify 

models from Python
● ideal ground for ML 

model development

RT Sandberg et al., IPAC23 (2023)
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Multiple hidden layers

Number of 
hidden nodes

Example of neural network with three 
hidden layers

Model of a single stage

Hyperparameter tuning indicated that relatively simple neural 
networks were sufficiently accurate

Stages 1-3: 5 hidden layers, 900 nodes per layer
Stages 4-15: 3 hidden layers, 700 nodes per layer

implemented in PyTorch
• PReLU
• MSE loss
• Adam optimizer

stage 3 models
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Relative errors in beam moments

stage 1 stage 2 stage 15

σx 0.12% 1.8% 3.2%

σpx 0.54% 2.1% 2.8%

εx 0.43% 0.38% 0.39%

σy 0.03% 1.5% 1.2%

σpy 0.3% 1.9% 3.2%

εy 0.3% 0.44% 2.1%

Black: WarpX reference
Red: ImpactX+surrogate

ImpactX+WarpX surrogate agrees with WarpX reference 
after 15 stages



Modeling + ML Inference are fully GPU accelerated,
approaches linear strong scaling in number of particles
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ImpactX with WarpX-trained 
surrogates: 10 GPU sec

for 15 stages
 

GPU inference time: 63ns / particle / stage
ImpactX tracking >1M particles

strong scaling of ImpactX+15 NN surrogates

103 particles Time (ms) % of push

Stage 15 Push 2.77 100

Inference 0.77 27.8

Data Preparation 2.00 72.2

107 particles Time (ms) % of push

Stage 15 Push 495 100

Inference 477 96.4

Data Preparation 18 3.6

ImpactX+WarpX surrogates, 1 GPU:
2-4 simulations / second!

WarpX simulation, 256 GPUs:
1 simulation / 5.1 hours

15 stages:

ImpactX with WarpX-trained 
surrogates:

2-4 simulations / second!

time in surrogates
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We Develop Openly with the Community

python3 -m pip install .
brew tap ecp-warpx/warpx
brew install warpx

spack install warpx
spack install 
py-warpx

conda install
        -c conda-forge warpx

module load warpx
module load py-warpx

cmake -S . -B build
cmake --build build --target 
install

Open-Source Development & Benchmarks:
github.com/ECP-WarpX

Online Documentation:
warpx|hipace|impactx.readthedocs.io

Rapid and easy installation on any platform:

230 physics benchmarks run on every code change of WarpX
34 physics benchmarks for ImpactX
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BLAST Codes: Easy to Use, Extend, Tested and Documented

LDRD github.com/ECP-WarpX/impactx

Example: ImpactX FODO Cell Lattice

💡 Same Script
  CPU/GPU & multi-node
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The HEP Team
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Accelerator modeling [PI: JL Vay] 

AMReX, I/Os [coPI: A. Almgren]

Conventional accelerator modeling [coPI: E. Stern]

Plasma accelerator modeling [coPI: W. Mori]

Machine learning for accelerators [coPI: A. Edelen]

Optimization (libEnsemble, POPAS) [coPI: J. Larson]

ADIOS I/Os [coPI: N. Podhorszki]



Kinetic IFE Simulations at Multiscale 
with Exascale Technologies

K I S M E T
PIC algorithms & WarpX 
Code, Plasma Modeling

Data Visualization & Analysis

Target Surface & Hotspot
Physics, Implicit Solvers

AMReX, Solvers

Low Density Plasma Physics,
Laser Absorption & Transport

Th
ru

st
s

Two Computational Thrusts
a) Particle-In-Cell algorithms & WarpX
b) Scalable data visualization & analysis

Four Physics Thrusts (aligned with 2023 IFE BRN)
a) low-density plasma physics
b) laser absorption & transport
c) proton-driven FI
d) hotspot physics

50

FES

Team

(lead)



Augmenting & GPU-accelerating PIC Simulations & ML Models

fields &      particles

tensors        arrays

Compatible ecosystem between:

Persistent GPU data placement
● read+write access, no CPU transfer

Cross-Ecosystem, In Situ Coupling:
Consortium for Python Data API 
Standards data-apis.org

GPU Workflows are blazingly fast
● PIC simulations
● Machine learning

Can we augment & accelerate on-GPU
PIC simulations with on-GPU ML models?



Modular Software Architecture
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WarpX
full PIC, 
LPA/LPI

AMReX

Containers, Communication,
Portability, Utilities

MPICUDA, OpenMP, SYCL, HIP

openPMD
diagnostics

Python: Modules, PICMI interface, Workflows

PICSAR
QED Modules

Math

FFTs,
lin. alg.

ABLASTR: shared PIC

ARTEMIS
microelectronics

ImpactX
accelerator lattice design

Desktop
to

HPC

HiPACE++
quasi-static, 

PWFA

pyAMReX

ML 
Frameworks

PyTorch, 
Tensorflow, …

…



WarpX Scales to the World's Largest HPCs

from a full stage simulation

Figure-of-Merit: weighted updates / sec

11
0x

50
0x

April-July 2022: WarpX on world’s largest HPCs
L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner at SC’22, 2022

Note: Perlmutter & Frontier were pre-acceptance measurements!

68,608 GPUs of 
First Exascale

Machine

7,299,072
CPU Cores
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Scientific Achievements

Significance and Impact

Technical Approach 

Complex target geometries used in recent experiments on Omega-EP and NIF-ARC 
require sophisticated computer models at realistic scale; left: log-pile; right: focusing 
hemispherical target for relativistic laser-driven ion acceleration 

GPUs enable kinetic simulations of relativistic 
laser-matter interaction with complex targets

• WarpX performance on GPUs slashes time to solution 
by 100x compared to CPU-based PSC

• Livermore Computing Grand Challenge on Tuolumne 

PI(s)/Facility Lead(s): Jean-Luc Vay (FES), Ann Almgren (ASCR)
Collaborating Institutions: LLNL, U. Rochester (LLE), Kitware
ASCR Program: SciDAC
ASCR PM: Dr. Marco Fornari
Publication(s) for this work: R. Lehe, M. Haseeb, J. Angus, D. P. Grote, R. E. 
Groenwald, A. Formenti, A. Huebl, J. R. Deslippe, J.-L. Vay, “An Efficient GPU 
Parallelization Strategy for Binary Collisions in Particle-In-Cell Plasma Simulations”, 
Proceedings of the 2025 Platform for Advanced Scientific Computing Conference 
(PASC ‘25). 

• Cost and feasibility of fast ignition of ICF targets with 
energetic ions depends directly on laser-to-ion coupling 
efficiency

• Complex target geometries require modeling at scale – 
enabled by GPU based explicit particle-in-cell

• Omega-EP experiments with log-pile targets yield 
unprecedented coupling efficiency and max. ion energy

• hemispherical targets promise focusing laser-driven ion 
beams for ion Fast Ignition IFE


