Measurement of directional muon beams generated at the Berkeley Lab Laser Accelerator

Sarah Schröder, Davide Terzani And Colleagues

Lawrence Berkeley National Laboratory (LBNL)

European Advanced Accelerator Conference, Elba, Italy — September 22-26 2025

ACCELERATOR TECHNOLOGY & ATAPOLIED PHYSICS DIVISION

Contributors

Theory and modeling (BELLA center)

D. Terzani, S. Schröder, S. Kisyov, C. Benedetti

LPA electrons (BELLA center)

A. Picksley, J. Stackhouse, H-E. Tsai, R. Li, K. Nakamura, A. J. Gonsalves

Muon detection (Physical Science)

S. Greenberg, L. Le Pottier, M. Mironova, T. Heim, M. Garcia-Sciveres

Supervision (BELLA center and LBNL)

J. Valentine, J. van Tilborg, C. B. Schroeder, E. Esarey, C. G. R. Geddes

LPA electrons and supervision

E. Rockafellow, B. Miao, J. Shrock, H. Milchberg

Muon Applications — An Increasing Interest

Muons' unique properties enable applications requiring deep penetration of dense materials.

Penetration of high-Z materials

S. Vanini et al., Philosophical Transactions of the Royal Society A377, 20180051 (2018)

Imaging of large objects

S. Bouteille et al., Nucl. Instrum. Methods A 834 (2016)

Detector response calibration

Active Layer

State Of The Art Of Muon Sources

Similar concept for the majority of muon sources (Fermilab, J-PARC, CERN, etc.)

Compact LPA designs for multi-GeV electron beams unlocking new opportunites for muon applications

A. I. Titov et al., PRSTAB 12, 111301 (2009) B. S. Rao et al., PPCF 60 (2018)

L. Calvin *et al.*, Frontier in Physics 11 (2023) P-F. Geng *et al.*, *Phys. Plasmas* 31, 023109 (2024)

Muon Generation At BELLA — The Experimental Concept

- > Petawatt laser system generating multi-GeV electron bunches
- > Muon production in high-Z converter target

Muon Generation At BELLA — The Experimental Concept

- > Petawatt laser system generating multi-GeV electron bunches
- > Muon production in high-Z converter target

The Electron Source: Bella-PW Laser System

> Laser

- > Laser power: 500 TW
- > Laser energy on target: ~21J
- > a0: ~2.2

> Plasma source

- > 30 cm gas jet
- > All-optical HOFI channel for laser guiding

> Resulting electron bunches

- > Broad-band spectrum with energies up to 8 GeV
- > ~80 pC charge above 2 GeV
- > Femtosecond bunch duration

A. Picksley et al., Phys. Rev. Lett. 133 (2024)

Muon Generation At BELLA — The Experimental Concept

- > Petawatt laser system generating multi-GeV electron bunches
- > Muon production in high-Z converter target

Primary Processes Of Electron-Matter Interaction In A Converter Target

1. GeV-level electrons primarily interact with matter via **Bremsstrahlung**

Primary Processes Of Electron-Matter Interaction In A Converter Target

1. GeV-level electrons primarily interact with matter via **Bremsstrahlung**

Characteristic Bremsstrahlung spectrum

Primary Processes Of Electron-Matter Interaction In A Converter Target

1. GeV-level electrons primarily interact with matter via **Bremsstrahlung**

Characteristic Bremsstrahlung spectrum

2. High-energy gammas primarily interact with material through **pair production**

Bethe-Heitler process:

Pairs are produced over a 1/y (<< 0.1 rad) cone

Primary Processes Of Beam-Matter Interaction In A Converter Target

1. GeV-level electrons primarily interact with matter via **Bremsstrahlung**

Characteristic Bremsstrahlung spectru

2. High-energy gammas primarily interact with material through **pair production**

Bethe-Heitler process

Pairs are produced over a 1/γ (<< 0.1 rad) cone

Electro-magnetic shower

Primary dynamics in target

Bethe-Heitler process

Muon Production Channels In A Converter Target

Pair-production channel

- > Muon production suppressed compared to electron-positron production by $R=m_e^2/m_u^2=2.34\times 10^{-5}$
- > Muon lifetime: $\tau_{\mu} = 2.2 \,\mu s$
- > Collimated pair production over a $1/\gamma$ (<< 0.1 rad) cone

Muon Production Channels In A Converter Target

Bethe-Heitler process

Pair-production channel

- > Muon production suppressed compared to electron-positron production by $R=m_e^2/m_\mu^2=2.34\times 10^{-5}$
- > Muon lifetime: $\tau_{\mu} = 2.2 \,\mu s$
- > Collimated pair production over a $1/\gamma$ (<< 0.1 rad) cone

Photoproduction of pions and their decay

$$\gamma + p \to \pi^{+} + n$$

$$\gamma + n \to \pi^{-} + p$$

$$\gamma + N \to \pi^{+} + \pi^{-} + N$$

$$\pi^+ \to \mu^+ + \nu_\mu$$

$$\pi^- o \mu^- + \bar{\nu}_{\mu}$$

Decay channel

- > Pion lifetime: $\tau_{\mu} = 30 \, ns$
- > Isotropic muon production over 2π

F. Zang et al. Nature Physics 21, 1050–1056 (2025)

Muon Production With Target Length

Terzani et al., accepted in PRAB (arXiv:2411.02321v3)

Theoretical optimisation

- > Optimal target thickness (10 GeV electrons): ~6-10 X₀
- > Experimental configuration: 142 X₀

Muon Production With Target Length

- > Optimal target thickness (10 GeV electrons): ~6-10 X₀
- > Experimental configuration: 142 X₀

Muon Production With Target Length

- > Optimal target thickness (10 GeV electrons): ~6-10 X₀
- > Experimental configuration: 142 X₀

Muon Generation At BELLA — The Experimental Concept

- > Petawatt laser system generating multi-GeV electron bunches
- > Muon production in high-Z converter target

Muon Detection Scheme

Muon Detection Scheme

1. Particles generated in the converter target, a fs-duration particle $(\gamma, e+, \mu-, \mu+ etc.)$ cloud, hits the scintillators

- 1. Particles generated in the converter target, a fs-duration particle $(\gamma, e+, \mu-, \mu+ etc.)$ cloud, hits the scintillators
- 2. Coinciding signals on both scintillator slabs self-trigger the detection, determining t_0 and opening the gate for later signals
 - a. Scintillator decay time: ~100 ns
 - b. Gating time: 50 µs

- 1. Particles generated in the converter target, a fs-duration particle $(\gamma, e+, \mu-, \mu+ etc.)$ cloud, hits the scintillators
- 2. Coinciding signals on both scintillator slabs self-trigger the detection, determining t_0 and opening the gate for later signals
 - a. Scintillator decay time: ~100 ns
 - b. Gating time: 50 µs
- 3. A **low-energy muon** that hits and **decays within the scintillator** produces a signal via the generated electron with a delay equal to the muon lifetime.

Note: only the low-energy part of the energy spectrum of produced muons is actually detected.

Signal Counts

Terzani et al., accepted in PRAB (arXiv:2411.02321v3)

Muon lifetime: 2.2 µs

Displaced Scintillators Also Provide Evidence For Muon Production

Both Off-axis and On-axis scintillator slab pairs measure muons, but the Off-axis assembly records more events.

Displaced Scintillators Also Provide Evidence For Muon Production

Both Off-axis and On-axis scintillator slab pairs measure muons, but the Off-axis assembly records more events

Simulation Setup

Beam

- > Experimentally determined energy spectrum
- > Divergence: 0.1mrad

Detection

- > Particle detection area: 8x4 m (>> $1/\gamma$ cone)
- > High-Z elements along the beamline included

Top view

Terzani et al., accepted in PRAB (arXiv:2411.02321v3)

Detector

plane

Wall

Summary And Outlook

Summary

- > Multi-GeV-class directional muon beams produced in a high-Z material converter target
- > Pairs of scintillators unambiguously detect muons in correspondence to the beam passage
- > Numerical analysis confirms the experimental results
- > Two muon production mechanisms distinguished by emission angles and typical energies

Outlook

- > Muon trajectory reconstruction
- > Single-muon energy measurements
- > Advanced design of detector shielding

Terzani et al., accepted in PRAB (arXiv:2411.02321v3)

261 ± 12 decayed muon candidates detected:

- > Over 2h of operation @ 0.1Hz (~700 shots)
- > Detector area: 0.05 m²
- > 13-foot filtering converter

