

Maxence Thévenet – DESY

Theory & simulation for plasma acceleration MPL

PHYSICAL REVIEW LETTERS 133, 265003 (2024)

Resonant Emittance Mixing of Flat Beams in Plasma Accelerators

S. Diederichs, ^{1,2} C. Benedetti, ³ A. Ferran Pousa, ¹ A. Sinn, ¹ J. Osterhoff, ^{1,3} C. B. Schroeder, ^{3,4} and M. Thévenet, ¹ Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany ² CERN, Esplanade des Particules 1, 1211 Geneva, Switzerland ³ Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA ⁴ Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA

(Received 8 March 2024; revised 30 August 2024; accepted 22 November 2024; published 31 December 2024)

Flat beams are preferred at the interaction point

Luminosity scales with $2 \sim 1/(\sigma_x \sigma_y)$ or $2 \sim 1/\sqrt{\epsilon_x \epsilon_y}$ Beamstrahlung scales with $2 \sim 1/(\sigma_x + \sigma_y)$ Flat beams with $2 \sim 1/(\sigma_x + \sigma_y)$ beamstrahlung and maximize luminosity

Acceleration of flat beams not mentioned as a key R&D challenge in ESPP

- [1] Schroeder et al, JINST 2022
- [2] Schulte, RAST 2016
- [3] Raubenheimer, SLAC PUB 1993

Realistic plasma stage sees considerable emittance exchange

- > **Drive bunch**: Charge: 4.28 nC, Length (rms): 42 μ m, $\epsilon_{[x,y]} = [60, 60] \mu$ m.
- \succ Witness bunch: Charge: 1.6 nC, Length (rms): 18 μ m, $\epsilon_{[x,y]} = [160, 0.54] \mu$ m.
- > Plasma: $n_0 = 7 \times 10^{15}$ cm⁻³, Length: 2.5 m, Lithium.

Mild ion motion or ionization causes considerable emittance exchange

Consider the dynamics of a single beam electron in wakefield $W = E + ce_z \times B$

Ideal blowout regime Axisymmetric and linear

$$W_r = E_0 \frac{k_p r}{2}$$

$$W_x = E_0 \frac{k_p x}{2}$$

$$W_y = E_0 \frac{k_p y}{2}$$

→ x and y orbits <u>fully decoupled</u>

Consider the dynamics of a single beam electron in wakefield $W = E + ce_z \times B$

Ideal blowout regime Axisymmetric and linear

$$W_{r} = E_{0} \frac{k_{p}r}{2}$$

$$W_{x} = E_{0} \frac{k_{p}x}{2}$$

$$W_{y} = E_{0} \frac{k_{p}y}{2}$$

→ x and y orbits fully decoupled

Example Axisymetric non-linear wakefields

$$W_{r} = E_{0} \frac{k_{p}r}{2} + \alpha r^{2}$$

$$W_{x} = E_{0} \frac{k_{p}x}{2} + \alpha rx$$

$$W_{y} = E_{0} \frac{k_{p}y}{2} + \alpha ry$$

- Ion motion/ionization/... caused by an axisymmetric drive beam
- Guiding channel for LPA
- → x and y orbits are coupled

Consider the dynamics of a single beam electron in wakefield $\mathbf{W} = \mathbf{E} + c\mathbf{e}_{\mathbf{z}} \times \mathbf{B}$

Ideal blowout regime Axisymmetric and linear

$$W_{\mathbf{r}} = E_0 \frac{\mathbf{k_p r}}{2}$$

$$W_{x} = E_{0} \frac{k_{p}x}{2}$$

$$W_{y} = E_{0} \frac{k_{p}y}{2}$$

→ x and y orbits fully decoupled

Example Axisymetric non-linear wakefields

$$W_{\rm r} = E_0 \frac{k_{\rm p} r}{2} + \alpha r^2$$

$$W_{x} = E_{0} \frac{k_{p}x}{2} + \alpha rx$$

$$W_{y} = E_{0} \frac{k_{p}y}{2} + \alpha ry$$

- Ion motion/ionization/... caused by an axisymmetric drive beam
- · Guiding channel for LPA
- → x and y orbits are coupled

General non-axisymmetric, non-linear fields

$$W_{x} = f(x, y)$$

$$W_{y} = g(x, y)$$

- Ion motion/ionization/... caused by a flat witness beam
- Laser misalignment in guiding channel for LPA
 → x and y orbits are coupled

Consider the dynamics of a single beam electron in wakefield $W = E + ce_z \times B$

Ideal blowout regime Axisymmetric and linear

$$W_{\mathbf{r}} = E_0 \frac{\mathbf{k_p r}}{2}$$

$$W_{x} = E_{0} \frac{k_{p}x}{2}$$

$$W_{y} = E_{0} \frac{k_{p}y}{2}$$

→ x and y orbits fully decoupled

Example Axisymetric non-linear wakefields

$$W_{\rm r} = E_0 \frac{k_{\rm p} r}{2} + \alpha r^2$$

$$W_{x} = E_{0} \frac{k_{p}x}{2} + \alpha rx$$

$$W_{y} = E_{0} \frac{k_{p}y}{2} + \alpha ry$$

- Ion motion/ionization/... caused by an axisymmetric drive beam
- · Guiding channel for LPA
- → x and y orbits are coupled

General non-axisymmetric, non-linear fields

$$W_{x} = f(x, y)$$

$$W_{y} = g(x, y)$$

- Ion motion/ionization/... caused by a flat witness beam
- Laser misalignment in guiding channel for LPA
 → x and y orbits are <u>coupled</u>

$$W_{[x,y]} = \frac{k_p[x,y]E_0}{2} \left[1 + \alpha_{[x,y]} H\left(\frac{r^2}{2L_{[x,y]}^2}\right) \right]$$
$$H(q) = [1 - \exp(-q)]$$

C. Benedetti *et al.*, PRAB 20, 111301 (2017)

A fraction of beam particles are trapped in a resonance

Single particle betatron amplitudes

$$W_{[x,y]} = \frac{k_p[x,y]E_0}{2} \left[1 + \alpha_{[x,y]} H\left(\frac{r^2}{2L_{[x,y]}^2}\right) \right]$$
$$H(q) = [1 - \exp(-q)]$$

C. Benedetti et al., PRAB 20, 111301 (2017)

- Electron has different $k_{\beta x}$ and $k_{\beta y}$ depending on initial conditions.
- The resonance is located on the diagonal $k_{\beta x} = k_{\beta y}$.
- Electrons in a specific area are trapped in the resonance.
- Resonant electrons see periodic exchange in x and y orbits.
- They are responsible for the emittance exchange.

A fraction of beam particles are trapped in a resonance

Single particle betatron amplitudes

$$W_{[x,y]} = \frac{k_p[x,y]E_0}{2} \left[1 + \alpha_{[x,y]} H\left(\frac{r^2}{2L_{[x,y]}^2}\right) \right]$$
$$H(q) = [1 - \exp(-q)]$$

C. Benedetti et al., PRAB 20, 111301 (2017)

- Electron has different $k_{\beta x}$ and $k_{\beta y}$ depending on initial conditions.
- The resonance is located on the diagonal $k_{\beta x} = k_{\beta y}$.
- Electrons in a specific area are trapped in the resonance.
- Resonant electrons see periodic exchange in x and y orbits.
- They are responsible for the emittance exchange.

A fraction of beam particles are trapped in a resonance

Single particle betatron amplitudes

$$W_{[x,y]} = \frac{k_p[x,y]E_0}{2} \left[1 + \alpha_{[x,y]} H\left(\frac{r^2}{2L_{[x,y]}^2}\right) \right]$$
$$H(q) = [1 - \exp(-q)]$$

C. Benedetti et al., PRAB 20, 111301 (2017)

- Electron has different $k_{\beta x}$ and $k_{\beta y}$ depending on initial conditions.
- The resonance is located on the diagonal $k_{\beta x} = k_{\beta y}$.
- Electrons in a specific area are trapped in the resonance.
- Resonant electrons see periodic exchange in x and y orbits.
- They are responsible for the emittance exchange.

- > Well-known (complex) phenomenon in RF accelerators
- Axisymmetric + non-linear is the worst case
 all particles are resonant → <u>full emittance exchange</u>

Ion motion from the driver can be solved with a flat driver

<u>Driver</u>: 4.28 nC, 42 μ m, $\epsilon_{[x,y]} = [60, 60] \mu$ m, [24, 150] μ m

<u>Witness</u>: 1.6 nC, 18 μ m, $\epsilon_{[x,y]} = [160, 0.54] \mu$ m

<u>Plasma</u>: Sodium 1+, $n_0 = 7 \times 10^{15}$ cm⁻³, 2.5 + 5*5 m.

→ A flat driver breaks the resonance and mitigates emittance exchange

Ion motion from witness beam is not (yet) solved!

<u>Driver</u>: 4.28 nC, 42 μ m, $\epsilon_{[x,y]} = [2.8, 2.8]$ mm, rigid

<u>Witness</u>: 1.6 nC, 18 μ m, $\epsilon_{[x,y]} = [5, 0.035] \mu$ m

<u>Plasma</u>: Hydrogen, $n_0 = 7 \times 10^{15}$ cm⁻³, length 77.5 m

→ A flatter beam causes larger emittance exchange

- 3D quasistatic particle-in-cell
- Multi-physics
- C++, on top supercomputers
- Mesh refinement

Open-source https://github.com/Hi-PACE/hipace

Wake-T

Quick simulations (benchmarked vs. FBPIC)

- 2D (axisymmetric) quasistatic
- Laser-driven or beam-driven
- Python, second/minutes on a laptop
- Adaptive grid & ion motion

Open-source https://github.com/AngelFP/Wake-T

- 3D quasistatic particle-in-cell
- Multi-physics
- C++, on top supercomputers
- Mesh refinement

Open-source https://github.com/Hi-PACE/hipace

Wake-T

Quick simulations (benchmarked vs. FBPIC)

- 2D (axisymmetric) quasistatic
- Laser-driven or beam-driven
- Python, second/minutes on a laptop
- Adaptive grid & ion motion

Open-source https://github.com/AngelFP/Wake-T

- ➤ With mesh refinement, 3D simulations of a 20 GeV stage from 175 GeV, emittance 135 nm, are very affordable Numerical convergence with transverse resolution of <u>5 nanometers</u> to fully resolve ion motion effects
- Multi-stage simulation studies done routinely
 A. Ferran Pousa et al. Proc. IPAC'23 14: 1533-1536.; S. Diederichs et al. arXiv:2403.05871 (2024).
- ➤ A collection of tools enables start-to-end multi-physics studies

 COMSOL-plasma for hydrodynamics simulations of HOFI, Optimas for scalable Bayesian optimization, LASY for laser manipulations

The DESY plasma group MPL

Andi Maier group leader

Wim Leemans division director

Manuel Kirchen Team Leader High Average Power LPA

Maxence Thévenet - EAAC2025 - 23.09.2025

Guido Palmer Team Leader Laser Development

Rob Shalloo Team Leader High Energy LPA

Maxence Thévenet Team Leader Theory & Simulations

Jon Wood Team Leader Beam-Driven Plasma Acceleration

Kris Põder Team Leader LPA Applications

Lutz Winkelmann Team Leader Scientific Engineering

Andi Walker Coordinator Scientific Infrastructure

Thank you for your attention

