Optimisation of Inverse Compton Scattering via spatiotemporal tailoring of scattering laser

C. Mariani 1,2, M. Meisel 1, L. Martelli 1, K. Põder 1

¹ Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ² University of Hamburg, Department of Physics, Jungiusstr. 9, 20355 Hamburg, Germany

All-Optical High Energy X-rays Applications in medical and industrial field

Advanced imaging applications could benefit from compact, tunable sources, such as all-optical high-energy X-ray (~100 keV) sources based on Inverse Compton scattering.

Radiation spectral bandwidth contributions

Implementation of Flying Focus through chirping and a chromatic focusing set up

The scattering pulse is first chirped [5], and then sent through a chromatic focusing set up [6][8].

First prototype of the set up shows promising results

References

- [1] S. Kulpe et al., Scientific Reports 9, 13332 (2019).
- [2] F. Grüner et al., Scientific Reports 8, 16561 (2018).
- [3] M. Meisel, "Tunable narrowband thomson source based on a laser-plasma accelerator ",
- PhD Thesis, University of Hamburg (2023).
- [4] T. Brümmer et al., Sci Rep 12, 16017 (2022).

- [5] https://lasydoc.readthedocs.io/en/latest/
- [6] https://raytracing.readthedocs.io/en/master/

Fourier limited beam [8].

[7] https://www.ansys.com/products/optics/ansys-zemax-opticstudio

[8] S. W. Jolly et al., Opt. Express 28, 4888-4897 (2020)

Contact: cristina.mariani@desv.de plasma.desy.de

programme under Grant Agreement No 101004730.

