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PRAIA

EuPRAXIA@SPARC _LAB aims to be the first European research infrastructure to demonstrate the application of a plasma accelerator. The project is currently in the technical design report preparation
phase. This facility combines a high-brightness electron beam in the GeV range, produced by an X-band linac, with a powerful 0.5 PW-class laser system, by utilizing a sophisticated “particle-driven
configuration” to achieve highly efficient particle acceleration. This method involves an RF injector system consisting of an S-band photoinjector and an X-band linac. In the typical operating scenario,

the system is designed to handle a witness beam with a charge of 30 pC and a driver beam with a charge of 200 pC. These beams are longitudinally compressed within the photoinjector and boosted in
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energy in the X-band linac. This work reports on beam dynamics studies devoted to investigating and comparing several methods to mitigate wake fields contributions in the X-band linac due to residual
machine misalignments regarding beam quality preservation. Dedicated simulations will be performed implementing Dispersion-Free Steering (DFS) and Wakefield-Free Steering (WFS) correction
algorithms with the RF track code, aimed at minimizing trajectory deviations and mitigating transverse emittance dilution, thus ensuring the beam quality required for efficient plasma injection.
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DFS and WFS analysis

Orbit Correction

We can correct the orbit computing the correctors strength required in order to center the bunch through all EPMs.

If R is the "response matrix” of our accelerator, that is, the matrix containing the response of each bpm to each corrector,

b

i = 5,
F

then, one can anticipate -in linear approximation- the vector of BPM readings, b, corresponding to any arbitrary set of corrector strengths, &
b=R-8.
Inverting this equation, given a measured orbit, b, one can find the set of correcting correctors settings, A
Ag=-R'-b

that provide a counteractin beam excitation. In this equation, (R.) ! denotes the pseudo-inverse of the matrix R.

Dispersion-Free Steering

We change the RF phase to send a test beam with an energy different from the nominal. Dispersion-free steering aims to have nominal and test beams pass through the

(wa I(}bl—b]) B (wct ?1;]-1—341])3-

Given a measured orbit and dispersive trajectory, the system of equations provides the correcting correctors’ settings:

ﬁﬂ:_(ﬁ-’d ?Rul—Ru]a) l(wd I(}bl_b])?

same BFM positions.

where (+-+) ! denotes the pseudo-inverse of the matrix.

Wakefield-Free Steering

We can apply the same principle to suppress the effect of wakefields on the trajectory. Wakefield-free steering uses a test beam with a different bunch charge to assess the

impact of wakefields on the trajectony.

b Ry
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Effectively, the trajectory proposed by this algorithm will be minimally subject to the impact of wakefizlds, that is, the trajectory passing close to each structure's

electromagnetic axis. More information about Wakefield-free steering can be found at this reference [1].

[1] A. Latina et al., "Tests of Beam-based Alignment at FACET", IPAC"14, Dresden, 2014,
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A beam steering technique aimed at simultaneously mitigating the effects of dispersion and wake fields on the emittance in a linac has been investigated. Further dedicated simulations are required to perform a comprehensive
parametric scan of the entire linac, accounting for different misalignment scenarios, as well as to carry out an empirical optimization of the weighting factors (w,; and w,,) to achieve optimal machine performance.
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