E31x collaboration @T U‘ LA
niversity of Colorado
Heinrich Heine Soulder Urivereityof
Universit F> NATIONAL ; A Cieath
U : ’ el A ACCELERATOR It -<) Strathclyde
A

Dusseldort i th\v L ABORATORY Glasgow
Plasma formation via electron-beam driver

lonization at SLAC FACET-II

Edgar Anton Hartmann', Ahmad Fahim Habib?3, Mirela Cerchez!, Marc Osenberg?, Thomas Heinemann?!, Andrew Sutherland?, Alexander
Knetsch4, Nathan Majernik4, Brendan O Shea*, Douglas Storey#4, lvan Rajkovic4, and Bernhard Hidding!?3
linstitute for Laser and Plasma Physics, Heinrich Heine University, Disseldorf - 2University of Strathclyde, Glasgow, UK -
3The Cockcroft Institute, Warrington, UK - 4SLAC National Accelerator Laboratory, Menlo Park, California, USA

Abstract Self-ionized wakefields
Electron-driven plasma wakefield accelerators offer an advantageous environment for realizing » The main goal is to investigate FACET-II driver electron beam self-ionization capabilities
advanced ionization-injection schemes, such as “Trojan Horse” plasma photocathodes [1]. Plasma » spectra of about 420 shots are presented in Figure 3 in the mixture (left) and pure He (right)
photocathodes utilize a synchronized laser pulse to release electrons from a dopant species directly Mixture pure He
Inside the wake structure. In comparison to laser drivers, the substantially lower peak electric field of L S 30
electron drivers facilitates the retention of a dopant species that can, in turn, be accessed for injection 10.2; =l 102 i i
already with comparatively low-power laser pulses. Plasma photocathodes therefore promise to _ so.o{t s 25 0.0 %
generate ultra-cold electron beams with emittances on the order of ~10 nm-rad. P o 0 3 as 208
The “E310: Trojan Horse-lI” experiment at the Facility for Advanced Accelerator Experimental Tests Il % - 2 % o -
(FACET-II) at SLAC National Accelerator Laboratory utilizes a 10 GeV electron driver and employs a g ' 1555 § | =
gas mixture of hydrogen and helium. The hydrogen component can either be pre-ionized by a dedicated 2 e T 10 °
laser pulse or self-ionized by the FACET drive beam, however, ideally without compromising the helium 9.2 " 9.2 i
dopant reservoir for selective ionization injection. 9.0 9.0
We present results from first systematic ionization tests in the context of the E310 experiment and 5 160 — —p o6 5 166 50 =75 460 -
discuss the employed experimental methods. shot number shot number
Figure 3: Waterfall energy spectra of the electron beam after interacting with the mixture (left) and pure He (right).
INntro d uction > Interestingly, we found signature of plasma lensing in the self-ionized H, plasma [4]
At relativistic energies electron beams posses a unipolar electric field that reaches field strength on the » The afterglow filtered in the range of the strong He transition line show strong linear correlations to
order of 10s GV/m. This field strength can tunnel-ionize neutral atoms, producing a self-ionized plasma. the decelerated charge below 9.80 GeV (cf. Figure 4)
The unipolar field pushes the self-ionized electrons off its propagation axis creating a region of lower Pearson correlation coefficients: TopView: 0.77, IPOTR1: 0.92 and IPOTR2: 0.88
electron density trailing the relativistic electron beam. In this region strong electric fields arise, known as He/H, mixture, He bandpass He/H, mixture, He bandpass He/H, mixture, He bandpass
wakefields. Plasma wakefield acceleration (PWFA) exploits these fields to accelerate electrons. 10° ] ‘
For plasma photocathode experiments it is crucial to mitigate the electron beam self-ionization of a so- ] . 107
called high ionization threshold (HIT) medium. The HIT medium provides a reservoir of neutral atoms to ] 107 ]
be ionized by solely an injector laser directly inside the wakefield. “g . € ] E
Furthermore, to create a stable wakefield and mitigate effects such as head-erosion a pre-ionized % ] - N
plasma is of essence for plasma photocathode injection. 2 5 , 510
e & 10° a
Experimental Set-Up in S20 at FACET-II
Electron beam Focussing System Picnic Basket Bypass Chamber Electron beam -- T o : — : T s : — 0 -:. e
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o IPWS1 | | | ol Schematic of Figure 4: Correlations of the plasma afterglow in the mixture on TopView (left), IPOTR1 (center) and IPORT2
E g [ N Y7 § ' the 14m long (right) with the decelerated charge detected on the DTOTR2 spectrometer screen.
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5L beam 5] data. > If the electron beam hits a pre-ionized plasma, the _ o
> Plasma Beamline can be filled with gas, we used: Pure He and a 50/50 mixture of H,/He plasma is heated and emits more afterglow [3] 3o — 08
> The plasma afterglow is imaged at TopView, IPOTR1 and IPOTR2 » Ascan of the lonization laser delay reveals the relative = \ } { T [ o2
Bandpass filter to look at strong He (587.6 nm) or H, (656.3 nm) transition lines were used timing of the laser and the electron beam (cf. Figure 5) g | { 8 ; i | — 3
. I f 5
> The electron beam is imaged by the Imaging Spectrometer onto a spectrometer screen » Regardless of the laser delay, decelerated chargeis 2 * ;
. . detected (cf. Figure 6) £ 31 Gigmoid fit, transition at 874.7 ps 02
Electron beam self-ionized plasma | L menwssomroimen Py
» Accelerated charge observed in the pre-ionized regime 500 600 700 800 90 1000
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g, ’ —— Lo J. . " . Figure 2: Images of an electron beam self-ionized plasma. Figure 6: Example spectra showing purely decelerated charge (left) and additionally accelerated charge

z [mm] z [mm] A shot with H,/(He) bandpass filter on the left/(right). (center and right). The blue graphs on the left show the integrated signal along the spatial axis respectively.
This experiment has shown that the electron beam at FACET-II is capable of ionizing H,. Due to Plasma photocathode

Ultrabright

plasma lensing in the H, the beams electric field becomes strong enough to ionize He. Clear electrons
i electron beam

signatures of driven wakefields are found in the self-ionized plasma. The experimental results
collected in this campaign strongly indicate that the requirements for plasma photocathode
Injection with the SLAC FACET-II driver bunch are satisfied. By tailoring the bunch parameters
self-ionization of He shall be mitigated and use He as a pure HIT medium in future experiments.

Figure 7: Visualization of the 90° Trojan Horse injection. [1] Figure 8: Visualization of collinear Trojan Horse injection. [1]
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