

Second Harmonic Light Generation From Plasma Apertures Modelled in Particle-in-cell Simulations

¹Radhika Nayli, ^{1,2}Martin King, ¹Robbie Wilson, ¹Ross J Gray, ^{1,2}Paul McKenna

¹SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom ²The Cockcroft Institute, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom.

INTRODUCTION AND MOTIVATION

- Interest in generating higher-order structured light at high intensities (>10¹⁸ Wcm⁻²) has been developing in recent years [1,2]. The predominant motivation of this comes from the ability to exercise control over the spatio-temporal profile of the resultant light which has the potential to be applied to laser-driven particle acceleration medical science, imaging, optical communication and inertial confinement fusion.
- Here we have investigated second harmonic (2ω_l) light generation from an intense laser-pulse interacting with a micron-scale planar target with a preformed aperture on the order of the laser focal spot. This builds on previous work [3,4], exploring the effect of the initial target electron density on the 2ω₁ conversion efficiency and laser propagation.

STRUCTRURED SECOND HARMONIC LIGHT GENERATION

- Relativistically intense laser pulse (I >10¹⁸ Wcm⁻²) interacts with a relativistically selfinduced transparent aperture (RSIT) or a pre-formed aperture target.
- Intense light at fundamental, ω_{ν} and higher harmonic frequencies of the laser are produced with distinct spatial structure.

Fig 1a - Laser pulse interacts with nm-thick solid target forming plasma aperture via RSIT, $2\omega_{\ell}$ light is generated at the aperture in laser propagation direction [3].

Fig 1b - Laser pulse interacts with pre-formed aperture μ m-thick targets show increased conversion efficiency to $2\omega_{\ell}$ light [4].

- Driver interacts with electron population around aperture and accelerates them in bunches along the laser axis through the aperture.
- Acceleration and deceleration of the electron bunches at the surfaces and the oscillating aperture generate harmonics with higher order spatial modes.

SIMULATIONS AND SECOND HARMONIC CONVERSION EFFICIENCY

- Laser-pre-formed aperture interaction was simulated using the fully relativistic PIC code EPOCH in 2D [2] to investigate the generation frequency doubled light specifically.
- A $2\omega_{\scriptscriptstyle L}$ bandpass filter was applied to the spatial transverse electric field.
- The 2ω_L signal at each output timestep (δt = 10 fs) was calculated by spatially integrating a 3 μm spatial region 5 μm after the rear of the target.
- This was then temporally integrated over the whole simulation to give the $2\omega_L$ conversion efficiency:

$$\eta_{2\omega L} = \frac{\int_{t_0}^{t_1} \int_{x_0}^{x_1} E_{y, 2\omega_L} dx dt}{\int_{t_0}^{t_1} \int_{x_0}^{x_1} E_{y, 1\omega_0} dx dt} \times 100$$

Fig 2b – Spatial distribution of $2\omega_L$ Ey field at t=100 fs.

APERTURE-DENSITY SCAN

- Previous work [4] has shown $\phi_L \approx$ aperture diameter is optimal for improving $\eta_{2\omega L}$
- The efficiency is also dependent on quantity of laser light entering aperture, strength
 of the longitudinal field of the focused laser and laser absorption into the plasma

$$\eta_{2\omega L} \propto |E_X(d/2)|Abs_L(l) K_{in}(d)$$

- Performed a 2D parameter scan of the aperture diameter and density, n_e for I_L = 10^{21} Wcm⁻², λ_L = 800 nm, ϕ_L = 2.1 μ m, τ_L = 40 fs and 6 μ m thick targets
- 2ω_L yield improved to 3.9 % with the optimal aperture diameter 1.9 µm and n_e = 16 n_{cot}

Fig 3 – $2\omega_L$ conversion efficiency as a function of aperture diameter and initial target density

LASER AND PLASMA EVOLUTION WITH DENSITY

Fig. 5 Relativistically corrected density at X=3 μm and t=100 fs

- For lower density targets, the aperture radius can temporally evolve to become significantly wider due to the spatial pondermotive force of the laser pulse.
- The front surface can become tapered to the laser field leading to a variation in the focal
 position of the propagating laser pulse.
- The tapered channel guides and focuses the laser into the central region of the aperture allowing higher intensities to be reached and reinteraction with aperture edges.
- Conversely at higher densities the laser pulse remains collimated through the aperture.
- 2ω_L light generated is more divergent but higher in energy with a low-density target.
- For a high-density target, the $2\omega_L$ generated light is lower in energy and more collimated.

reduced.

By reducing the target thickness the reinteraction of the laser at lower densities is

 This leads to a variation in the efficiency trends for target thickness for targets of different initial densities.

Fig. 8 Variation in $2\omega_L$ efficiency for target thickness for $16\,n_{crit}$ and $80\,n_{crit}$ targets

DISCUSSION AND FUTURE WORK

- Combined effects of the formation of the evolution of aperture diameter, the tapering of the front surface, the subsequent laser self-focusing and re-interaction with the aperture leads to improved efficiency of the generation of $2\omega_L$ light for lower density targets.
- For experiments, lower density targets are not practical but the effect may be reproduced by introducing a pre-plasma scale length on a solid density target.
- Initial testing with defined scale-lengths have demonstrated this.
- As efficiency varies with a large number of parameters, machine learning techniques are being investigated to optimize this behaviour.

Fig 9– $2\omega_{L}$ conversion efficiency as a function of aperture diameter and scale-length

REFERENCES

- [1] Thaury C et al. 2010 J. Phys. B. At. Mol. Opt. Phys. 43 213001
- [2] Macchi A, et al. 2013 Rev. Mod. Phys. **85** 751
- [3] Duff M et al. 2020 Sci. Rep. 10 105
- [4] Bacon E F J *et al.* 2022 Matter Radiat. Extremes **7** 054401