1 2

Yueran Tian Yueluo Wang L

2 4pge k¥

BEIJING NORMAL UNIVERSITY

1School of Physics and Astronomy, Beijing Normal University
Physics and Astronomy, University of California, Los Angeles

Thamine Dalichaouch 3
Weiming An #

2Department of Astronomy, Peking University
4nstitute for Frontiers in Astronomy and Astrophysics, Beijing Normal

GPU-MPI Parallelization for QuickPIC, an
Algorithm for Simulating Plasma Wake Field
| Acceleration

EAAC

Viktor Decyk > Warren Mori 3

3Department of

University

Introduction

Plasma wakefield acceleration (PWFA) uses high-energy particle beams to generate oscillations in plasma,
which in turn creates longitudinal electromagnetic fields that accelerate charged particles.
QuickPIC is a particle-in-cell program that employs quasi-static approximation to effectively simulate PWFA.

e Quasi-static approximation: since particle beams evolve at a much longer time scale than the plasma
wavelength, QuickPIC separate the beam and plasma evolution time scales, and " pauses” the beam
evolution while calculating multiple steps of plasma response.

QuickPIC supports parallel simulation on multiple CPUs via OpenMP and Message Passing Interface (MPI).
We have now ported QuickPIC onto GPU platforms in a new version named QuickPIC-GPU, to support
simulation with one or more GPUs.

QuickPIC separates beam and plasma computation into 3D (outer) and 2D (inner) loops. The 2D loops that
calculate plasma response dominate computational load. A 2D loop is mainly made up of functions from two
Fortran 2003 top layer classes: field2d (electromagnetic fields) and species2d (particles). These in turn rely on
mid layer classes: fft2d (fast Fourier transforms), fpois2d (Poisson equation solver), ufield2d (field storage and
arithmetic operations), part2d (particle related computations) and fdist2d (particle array initialization).
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Figure 1. Class diagram of QuickPIC. Classes outlined in red are the main GPU revision targets.

In porting QuickPIC to GPU platforms, the Fortran77 functions called in these mid layer classes are replaced
with CUDA C functions. In the original functions, the simulation box is divided equally among MPI nodes,
and the particles (grouped by larger subregions called tiles)/discretized fields in each node are distributed to
the CPU cores in the node via OpenMP. In the new CUDA C functions, each MPI node drives one GPU, with
tiles (if needed) assigned to CUDA blocks and particles/grid points distributed across threads.
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Figure 2. Mapping of CUDA architecture to simulation objects (withe particle simulation as an example).

Parallelizing CPU serial loops into GPU kernel functions risks concurrent thread access to shared memory
addresses, leading to race conditions. For example, in calculating charege density distribution, multiple
particles contribute to the same grid point, so threads may simultaneously read, modify, and write to the same
memory location. Without synchronization, threads could read unmodified values, resulting in incomplete
updates (e.g., only one particle's contribution recorded instead of the cumulative sum). To resolve this,
CUDA-specific atomic operations (e.g., atomicAdd(), atomicMax()) were employed. These operations serialize
access to shared/global memory locations, ensuring that only one thread modifies a target address at a time.
In the CPU version, some functions (mainly functions that handle particle migration across tiles) include
multiple OpenMP loops with inter-dependent results. We convert these loops into separate CUDA kernels
called by the same host function, so that they are executed sequentially, and inter-dependent results are
calculated before the are read by a different thread in a different block.

Particle migration, fast Fourier transform (FFT), and some other operations include MPI transfers across
different nodes. We replace the original CPU-to-CPU MPI transfers with CUDA-aware GPU-to-GPU transfers,
to avoid copying data to CPU memory before the transfer, and from CPU memory after the transfer.

Performace Evaluation

e Accuracy
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Figure 3. Simulated with the program before(left)/after(right) revision, electric field in direction z (&), distributed across the
x-& plane.
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Figure 4. Comparison of simulation result before/after revision, electric field in direction z (£), distributed along the z axis.
Simulations were conducted with 64 CPU cores (for the old program) and 1, 2 and 4GPUs (for the new program).
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Figure 5. Measurement of simulation 2D time in seconds. Subplots (a), (b), (c) and (d) shows setups with 4/9/25/100
particles per cell, respectively. Execution time is measured with 8(blue, plain)/16(orange, plain)/32(green, plain) CPU threads
and 1(blue, slashed)/2(orange, slashed)/4(green, slashed)GPUs. In each subplot, results with a simulation resolution of 5123
are shown on the left side, and results with a simulation resolution of 10243 are shown on the right side.
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Figure 6. Number of node hours spent in 2D simulation. Subplots (a), (b), (c) and (d) shows setups with 4/9/25/100 particles
per cell, respectively. Execution time is measured with 32(green, plain) CPU threads and 1(red, slashed) GPU. In each subplot,
results with a simulation resolution of 5123 are shown on the left side, and results with a simulation resolution of 10243 are
shown on the right side.

Discussions

@ FFT transpose cost In FFT transpose, using multiple GPUs lead to a high computational cost in data
transfer across MP| nodes. This in turn causes the total simulation time of 2 and 4 GPUs to be longer
than that of 1 GPU. In future revisions, we shall attempt to use finite difference field solvers to avoid this
transpose across the whole simulation box.

@ 3D loop revision We plan to also move 3D particle and field solvers to GPUs, to reduce data transfer
and optimize the 3D loop.
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