Radiation Safety Challenges and Detector Solutions for Plasma Accelerators

S. Bohlen*, A. Leuschner, T. Liang and O. Stein

Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg

The PANDORA detector^[1]

Neutron and photon measurements

- Experiments at FLARE with ~50 MeV electrons using ionization injection ^[2].
- Charge increased by increasing laser power.
- PANDORA enables indirect charge measurements and indicates low vs. high energy.

ADC for time resolved radiation measurements

 Independent measurement of repetition rate of 2.5 kHz at VERA.

 Measurement of different radiation sources at KALDERA with resolution of few ns (2-3 m)

Radiation generation in plasma accelerators

- Plasma accelerators are linear colliders, not synchrotrons.
- Linear colliders generate orders of magnitude more charge, thus radiation is more critical:
 - PETRA III has a loss of 10¹⁵ electrons per year
 - FLASH produces up to 10¹⁵ electrons per second
- Unique plasma-accelerator properties further complicate radiation generation.

Generation of unwanted charge

• KALDERA: Comparison of measurements and simulations:

Total dose rate (100 MeV. 5 MeV rms. 10

- Possible reasons for dose-rate differences:
- Simulations assume perfect electron capture in the dump.

Simulation: 400 µSv/h at 1.0 W

- Low-energy electrons created at large angles stay undetected, but create dose.
- Dose contribution of not carefully dumped electrons can be orders of magnitude higher.
- Electrons may be heated or emitted radially from the plasma target.

bremsstrahlung from electrons [3] radial emission of electrons [4]

Driver dumping in beam-driven accelerators

- Used drive bunches typically have a large energy spread: transport is challenging.
- FLASHForward currently limited to 20 W due to fear of radiation damage at undulators next to it.
- At these powers electronic devices keep failing.
- FLASH2 has allowance to run with up to 100 kW.

[2]S Bohlen et al., Phys. Rev. Accel. Beams 25, 031301, 2022

[4]T Garett et al., arXiv:2506.21503v2, 2025

High-power plasma accelerators

- Require controlled dumping of all electrons.
- Require dumps placed safely away from electronics and magnetic structures (e.g. undulators).
- require critical dumping and shielding, sometimes at the cost of compactness.

Radiation physics at high x-ray flux

- Shielding experiments using 150 mm copper block.
- XFEL beam with energy of
 9.3 keV sent on block.
- Beam should be attenuated by factor 10¹⁰⁰⁰⁰.
- Instead: Burn through of copper block in 4 s.
- Similar effects in other materials.

Shielding of high flux x-rays not possible!

Burn-through monitor system

- Indirect detection of radiation from air fluorescence
- Detector system acting on accelerator operation
- Continuous self-testing of entire detector system
- Easily customizable to match monitored volume

Summary

- The PANDORA detector is well suited for radiation measurements at plasma accelerators. Community input for further improvements is welcome.
- Low-energy electrons or used driver bunches can cause significant doses if not dumped carefully.
- At high average powers, all radiation poses risks to nearby electronics and magnetic structures.
- At very high fluxes, x-rays cannot be fully shielded.
 A burn-through monitoring system was developed to ensure safe operation with such beams.

References

^[1]A Klett et al., Radiat. Meas. 45, 10, 1242-1244, 2010 ^[3]WP Swanson, TRS 188, IAEA, 1979

HELMHOLTZ

* Contact: simon.bohlen@desy.de EAAC 2025, Elba, Italy

