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Industrial applications call for MilliJoule lasers require stable, micrometer-scale
industrial lasers plasma sources
Laser plasma accelerators working at kHz repetition rate [1, 2, 3, 4, Supersonic de Laval nozzles enable long-term, high average power operation
5] can be disruptive in a wide range of applications:
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Industrial lasers are turn-key systems which deliver milliJoule o ) . £
pulses and can be extremely useful for the goal: | 40 ym .

High repetition
rate

Fig 5: Typical plasma density profile, obtained 230 pum above the
Reliabilit Fig 4: Selective laser etched supersonic nozzle, designed in-house and nozzle with 23 bar of backing pressure of N,. The measured
ellability produced by LightFab. density (blue) is compared with the simulated one (red).

The first electron acceleration driven by an industrial Yb:YAG
laser has been achieved!

Yb:YAG lasers (1030 nm) can Demonstrated a record repetition rate acceleration of 2.5 kHz

efficiently drive a Plasma accelerator Clear electron signal has been measured on the electron profile screen and on the main radiation detector
18]. The signal could be optimised through: (1) plasma source backing pressure, (2) plasma source position,

From milliJoule, picosecond pulses to relativistic (3) laser compressor configuration. Results are still under analysis [9].
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Post-compression techniques enable pulse compression .
N .. : ---- Detector noise
beyond the initial transform limited duration [6]: . - 20
104 & Detector signal
|
‘ = 15 _
£ 0.8 - E
Spectral 5 -
. = S,
broadening — —
2 10 S
2 0.6- IS,
o n
@)
-
- - Jiime S
Dispersion !U’ l,ll‘,u.,w £ 0.4 - >
compensation Ll 2 | e e im
N T 42— e
Fig 1: General scheme of a multi-pass cell (MPC) 0.2 "= T 0
post-compression setup. Y MR L § S T
Combined with a strong focusing, they allow the intensity needed 0.0 7= R R S

to drive the laser plasma interaction to be reached: 20 25 30 35 40 45
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/\ s ] Fig 6: Radiation detector signal and electron profile screen images as a function of the
10 nozzle backing pressure (nitrogen). The profiles shown are averaged over 20 images, each . {
101 one integrating 12 laser shots [9]. regIStered to date‘

, >QRUP{
y [um]
o
| [W/cm?]

O B Currently operating at 2.5 kHz, the system is designed to

/f/ L 7 04 go beyond 10 kHz!
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Fig 2: FROG retrieved pulse temporal profile at the interaction point (left) and corresponding laser spot — * ”
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; : I , Fig 7: Radiation detector signal frequency, showing electron acceleration at 1.25 kHz (left) and at the record repetition rate of 2.5 kHz (right) [9] .
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Fig 3: Scheme of the acceleration chamber, with the key components marked in different colours. 5] Salehi et al. Phys. Rev. X (2021)
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