

The Program of AWAKE towards High-Energy Electrons for Particle Physics Experiments

Edda Gschwendtner, CERN for the AWAKE Collaboration

EAAC2025, 21 – 27 September 2025, Elba

AWAKE at CERN

ATVAKE

Advanced WAKEfield Experiment

- → Accelerator R&D experiment.
- → Unique facility driving wakefields in plasma with 400 GeV proton bunch from the SPS.
- → Accelerating externally injected electrons to GeV scale.

- The only proton driven plasma wakefield acceleration experiment worldwide.
- → High energy gain possible because the highenergy driver is available today.

AWAKE is an International Collaboration

Daresbury Manchester

Liverpool

Oxford London

Madison

Greifswald

Dusseldorf

Marburg

Budapest

Korea

Towards Higher Energies

Proton bunch driver: → single plasma cell ~SPS 19 kJ/bunch, LHC 112 kJ/bunch

→ Rely on self-modulation of the proton-bunch

→ Immediate use of SPS proton bunch for driving strong wakefields!

AWAKE Clear Timeline towards Applications

AWAKE addresses key challenges relevant for the entire plasma-based accelerator community:

→ quality, emittance control, energy spread, external injection, plasma source developments, ...

Transition from proof-of-concept towards applications.

AWAKE Experiment until Today

RUN 1 (2016-2018)

p+ self-modulation

2 GeV e- acceleration

RUN 2 (2021-2033)

e- acceleration to several GeV, beam quality control, scalability

Key Ingredients of AWAKE

dump

Proof-of-Principle Results

New Plasma Source with Density Step

Stabilising large wakefield amplitudes

M. Bergamaschi, Talk, PS1, Wed

→ New plasma source: density step and change of plasma length

Introducing a density step in the plasma source

- → stabilization of the micro-bunches
- Increased wakefield amplitudes after SSM saturation

K. V. Lotov, Physics of Plasmas 22, 103110 (2015) K. V. Lotov and P. V. Tuev 2021 PPFC **63 125027**

- Independent electrical heater of 50 cm from 0.25 to 4.75 m, Step height up to ±10%
- 10 diagnostic viewport -> measure light emitted by wakefields dissipating after passage of the p+ bunch
- 10 plungers from 0.5m to 10.3m

New Plasma Source with Density Step - Results

New Plasma Source with Density Step - Other Results

Light emission of dissipating wakefields

Investigate longitudinal evolution of wakefields

> J. Mezger, Poster Tue

along the plasma.

Talk, PS1, Thu

New Plasma Source with Density Step - Other Results

Light emission of dissipating wakefields

> J. Mezger, Poster Tue

M. Bergamaschi,

Talk, PS1, Thu

AWAKE: What's Next?

RUN 1 (2016-2018)

p+ self-modulation

2 GeV e- acceleration

RUN 2 (2021-2033)

e- acceleration to several GeV, beam quality control, scalability

Next: Two Plasma Sources - Electron Beam Quality

Demonstrate electron acceleration and emittance control of externally injected electrons.

Getting Ready for Run 2c: CNGS Target Area Dismantling

600 m³ equipment (including 500 m³ shielding blocks) up to 20 mSv/hr

New surface building for the storage of CNGS concrete shielding blocks to reuse at CERN.

→ Dismantling: 2025/2026

Getting Ready: Design, Integration and Installation

New e-source prototype

in CTF2 → commissioned

S. Doebert, Talk, PS2, Mon

New electron beam: 150 MeV, 200 fs, 100 pC, $\sigma = 5.75 \mu m$

 \rightarrow bunch length shorter than plasma wavelength, $\varepsilon_{\text{norm}(x,v)} = 2\text{mm mrad}$

On-axis injection, Blow-out regime, Beam loading: reach small $\partial E/E$, Match transverse properties to the plasma

Position of beam line elements well defined.

E. Belli, Talk, PS4, Mon

Design and integration of services ongoing.

Improved instrumentation

- \rightarrow High resolution BPMs (10µm) and beam screens (1µm)
- → Emittance measurements, bunch length

M. Moreira, Talk, PS4, Mon

Injection region

- → Limited space
- → components with custom design

 \rightarrow Installation: 2027/2028

→ Physics Run starts in 2029

Next, Next: Scalable Plasma Sources - Demonstrate Scalability

Development of scalable plasma sources to 100s meters length with sub-% level plasma density uniformity

Experimental observation of the motion of ions in a resonantly driven plasma wakefied accelerator M. Turner et al. (AWAKE Collaboration), PRL 134, 155001, 2025

Scalable Plasma Sources R&D Results:

ATVAKE

→ First Longitudinal Density Profiles Using Thomson Scattering

Technical challenge: achieve 0.25% plasma uniformity and be able to measure it.

So far, ~ 6% measured uniformity, at the limit of diagnostic capability!

→ focus on plasma diagnostics and source design optimization.

z-Position (mm)

A. Sublet, Talk, PS1, Wed

1 m Helicon Plasma HPS. Source (HPS) uniformity ± <11 % **DPS** - helical preliminary Density (m⁻³) Renat Karimov, EPFL-SPCAntenna locations 600 200

3 m Discharge Plasma Source (DPS)

uniformity ± 6%

Carolina Amoedo, CERN/IST

C. Almoedo, Poster, Tue

Synergies with Other Major Projects

ATVAKE

- AWAKE is a novel accelerator in a real accelerator environment
 - Commissioning and operation of complex experiment.
- HALHF, ALIVE, Higgs factories
 - Long, uniform, well-controlled plasma sources.
 - External injection → staging.
 - Proton-driven wakefields.
 - Understanding of beam-plasma instabilitites.
 - Development and validation of simulation tools.
- FCC-ee, CLIC
 - Experts on electron acceleration and operation are trained on AWAKE.
- CLEAR, CTF2
 - Development of new RF photo-injector.
 - Development/test of electron beam diagnostics.
 - Maintaining electron gun and beam line expertise.

First Applications

RUN 1 (2016-2018)

p+ self-modulation 2 GeV e- acceleration

RUN 2 (2021-2033)

e- acceleration to several GeV, beam quality control, scalability

2032 2033 2034 2024 2025 2026 2027 2028 2029 2030 2031 2021 2020 2013 2016 2017 2018 2019 LS3 LS₂ Run 2c Run 2d Run 2b **CNGS** Run 2c Run 2 Run 2a Run 1 Run 1 Preparation dismantling installation Preparation

→ First applications >2034

Applications of AWAKE Technology

In AWAKE facility, could conceive of O(50 GeV) electrons.

First applications to high energy physics for 50 GeV beam:

- → Use for collider, e.g. *ep* collider, which would be like a low-luminosity LHeC.
- → Beam-dump experiments to e.g. search for dark photons.
- → Interaction with high-power laser to investigate strong-field QED
 - → Investigate new region with high energy, currently no competitors, only modest laser needed, with increasing laser power probe more phase space

Higgs Factory based on plasma wakefields – ALIVE

Collision energy: 250 (125 + 125) GeV, with upgrade to TeV range Estimated luminosity: $1.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- → Proton drive bunches from fast cycling synchrotron (HTS magnets) or FFAG to reach competitive luminosity.
- \rightarrow Short proton driver (s_z = 150 µm); density gradient in plasma.
- → Electron and positron acceleration to very high energy in one single plasma (100s meter).

J Farmer, A. Caldwell, A. Pukhov, 2024 New J. Phys. 26 113011 (2024)

Summary

- AWAKE is a high-profile accelerator R&D experiment and has achieved significant scientific and technological progress.
 - All milestones achieved: processes of self-modulation, instabilities, electron acceleration, etc. well understood.
 - Developed self-modulator plasma source, scalable plasma source prototypes.
 - Exploit the unique possibilities of the CERN accelerator complex and adding to the diversity of the CERN program.
- AWAKE addresses many challenges common to all plasma-based accelerators.
- AWAKE has a clear program for Run 2 until 2034 and towards first applications.
 - Major upgrades are underway for physics start in 2029, when proton beam is back.
 - Demonstrate high-quality acceleration of electrons to high energies using scalable plasma source.
 - Propose first particle physics experiments.

AIVAKE