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Thin, Underdense, Passive Plasma Lens (TUPPL) @EU”“’ers‘“")foo'oradoB°“'°'er

* Thin — PWFA much shorter than one betatron period
 Underdense — Nonlinear blowout regime
* Passive — No reliance on externally driven current

* Plasma Lens — Transverse focusing impulse with negligible energy change
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Attractive Features of TUPPL @ University of Colorado Boulder

Extremely strong focusing
 Orders of magnitude beyond electromagnets, PMQs, APL

Axisymmetric focusing
* Single lens can achieve symmetric focus in x & y

Ultra-compact
 Plasma lens itself: 400 pum
 Gasjet & laser hardware: <1 cm footprint along beam line

Rapidly and easily tunable
* Strength scales with density = gas pressure
» Strength scales with length = laser energy / focus/ height above gas jet
* Density length product = plasma expansion

Self-aligning

 Central axis of blowout determined by electron beam



COm pa rison o Other focusing OptiCS @ University of Colorado Boulder

PPL focusing strength is orders of magnitude stronger than magnets of
equivalent phase advance (normalized length).

Phase advance (normalized length): Ay = VKL = 0.0458

m

Quadruple Magnet

Quadrupole Electro- 0.01 3990
magnet
Permanent Magnetic 0.5 15 12 564
Quadrupole
Active Plasma Lens 3.6 108 4.4 210
Thin PPL (blowout 1468 44000 0.22 10.4
theory, 5 X

Shol 10 cm™3)

Adapted from Taylor, SLAC-PUB-5621 (1991) Thin PPL (June 2025 437 13100 0.4 19

exp., preliminary)



E-308 Experimental Setup

Laser-ionized H, gas jet
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P | aSma Re q U | reme nts @ University of Colorado Boulder

Maximize focusing strength: minimize focal length - maximize n L

1 L7

/= KL 27 Ny L

Remain in thin lens regime: keep phase advance < 0.2 - keep sqrt(n,)L low

Ay = VKL = \/ 2Ty |

Vb

Remain in underdense blowout regime: 2 n, < n, = keep n, sufficiently low

Summary: Requirements push toward lower density and longer length.

Experimental conditions made it challenging to optimize n, and L.
Result: operated in overdense thin lens regime during previous run.
Improved modeling, diagnosis, and control of plasma source expected next run.
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* Laser energy was limited to 3 mJ to avoid damaging final mirror

- limited initial plasma lens length

* Fluid models used to estimate gas density above jet nozzle, but large uncertainty on
backing pressure in experimental device (no local gauge)

 Challenging to reach low densities with minimum operating backing pressure

* Solution: ionize small volume at high density and allow plasma to expand

Split-step Fourier ionization code

Radial neutral density profile . Final plasma density, f=50cm, E=3.0m) i
— 0.5cm ‘ 7
Fluent simulation — s 150 .
e 100 Max L: 132 um
1017 4 — 3.0cm assume 1e17 50 ‘): Need tO rely On plasma
T 0 ‘s expansion to reach target
E I 0 = plasma length ~ 500 um.
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@ University of Colorado Boulder

Plasma Length Estimation

 Laser /e-beam arrival delay scan performed to find good working point
* Set electron imaging spectrometer to parallel-to-point
 Scanned delay and looked for strong divergence increase of witness beam

No Interaction Interaction
« Two different Working Points (WP) studied: ol R Drive | | &1
_ Working Point 1 Working Point 2 Lu13001§ o -
Nozzle Height -1.5 cm -1.0 cm |
Delay Time 3 ns 20 ns 1000% - e
X’ X’

Both produced very similar results

* Laser position scan performed to estimate plasma lens length
 Assumed azimuthally symmetric plasma profile w.r.t. laser axis, perp. to e-beam
 Translated laser above/below e-beam axis until interaction ended
* Measured movement of laser to find the plasma length L = 400 um for both WP’s



Electron Beam Configuration: Two Bunches @l} University of Golorado Boulder

Two-bunch configuration generated using notch collimator with chirped beam

Long, roughly linearly chirped witness beam

e Can sample long region inside wake

e Chirp permits longitudinally resolved measurement of focusing with imaging spectrometer
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FACET-Il Electron Imaging Spectrometer @E University of Golorado Boulder

Plasma Lens Beam Direction OTR Screen
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Stro Ng FOCUSing Of Withess Beam @ University of Colorado Boulder

* Object plane scan preliminary results (still need chromatic correction) Focusing along bunch
* Observed strong focusing of 200-300 pC witness bunch ;
: : o 0 ront
* Reduced min. spot size to 6" = 11-14 um from initial value of 20 um .
* Reduced min. beta function to B* = 14-21 cm from initial value of 75cm £
1 rear
* Moved waist upstream by 20-30 cm
* Rear of witness beam was beyond first wake period and defocused OO R
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@ University of Colorado Boulder

Witness Bunch Emittance Analysis

Data Analysis: WP1 Witness Bunch Emittance

* Analyzed emittance of 20 energy slices of ~10 MeV [ i lonon
* Used object plane and M, scan data l l [ 1 [y
* Fit to equation: l I
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Drive Bunch Emittance Analysis @E Jniversity of Golorado Bouilder

WP1 Drive Bunch Emittance

Preliminary Observations o !
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summary

Observed strong focusing of witness bunch in a thin, passive plasma lens
¢ 200-300 pC, 0": 20 um = 11-14 pum, B*: 75cm = 14-21 cm, Az": 2-30 cm
* Preliminary results — chromatic correction required

Did not reach the underdense blowout regime
* Emittance growth by factor of ~2 due to nonlinear focusing fields
* Tail of bunch extended beyond first wake period

Expect optimized performance in underdense regime next run
* Better plasma source modeling, diagnostics, and control
* Will lower plasma density and increase length

Will eventually use in combination with other experiments at FACET-II
e Strong focusing for matching into a PWFA
e Focusing boost prior to multi-foil transition radiation focusing device
* Asymmetric driver and blowout (w/ Pratik Manwani, UCLA)
* Transverse gradient TUPPL
* Divergence control of plasma-injected beams

@ University of Colorado Boulder
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Fvidence of passive plasma lensing @E Jniversity of Golorado Boulder

* Object plane scan with no chromaticity correction
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Preliminary PIC simulation studies Gy univrsiy of Cotorado Boulder

150

e Simulation parameters:

100 Plasma density (1e+17 cm™) e Gaussian transverse profile with 20 um spot size and 75 cm beta that match x-
plane measurement.

50 -

] S e Current profile from BMAD simulation generated by Claudio, similar to TCAV
3 0 @ measurement.
® %0 i * Plasma density ~ 5 x 101 cm™3; plasma length ~ 400 um.

~100 * Witness beam samples three regions: first wake, defocusing

_n region, front of the second wake.
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Plasma E)(pa nsion Simu|ation @ University of Colorado Boulder
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Density Length Product Evolution @[} University of Colorado Boulder
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