

- EAAC 2025 -

Measurement of the radius of a plasma column in presence of a relativistic proton bunch

Lucas Ranc (1)

CLAIREMBAUD, Arthur (1); DEMETER, Gábor (2); JAWORSKA, Helena (3); MEZGER, Jan (1); PAGE, Jedd (1); PANNELL, Fern (4); TURNER, Marlene (3); BERGAMASCHI, Michele (1,3); KEDVES, Miklos (2); VAN GILS, Nikita (3); MUGGLI, Patric (1)

(1) Max Planck Institüt für Physik, Munich, Germany

(2) HUN-REN Wigner Research Centre for Physics, Budapest, Hungary

(3) CERN, Geneva, Switzerland

(4) UCL, London, UK

Content

- Introduction
- Evaluation and estimation of the plasma parameters
- Results
 - Experimental overview
 - Physics studies
- Summary & Outlook

Introduction

- AWAKE Experiment: accelerate electrons to GeV scale in the wakefield of proton micro-bunches
- Accelerating medium: Rubidium: 10 m long-plasma, 1e14 1e15 cm⁻³ density
- Ionized Rb vapor using a Ti:Sapphire TeraWatt <u>Laser at 780 nm at resonance</u>, 120 mJ, 120 fs
- Experimental motivation of the present study:
 Determine the plasma characteristics via <u>Schlieren Imaging</u>
- Characterization of plasma column:
 Experimental quantification of plasma's:
 - Transverse size
 - Edge sharpness
 - Adequate homogeneity
 - Rb atomic transitions properties
 - ...

Content

- Introduction
- Evaluation and estimation of the plasma parameters
- Results
 - Experimental overview
 - Physics studies
- Summary & Outlook

Schlieren Imaging

- Sharp edges & transverse size
 - Optical technique sensitive to small variations in the refractivity
 - Fourier filtering optical system
- Without plasma
 - no signal mask filters the probe beam completely
- With Plasma
 - high frequency components pass through the mask.

Schlieren Imaging

- Sharp edges & transverse size
 - Optical technique sensitive to small variations in the refractivity
 - Fourier filtering optical system
- Without plasma
 - no signal mask filters the probe beam completely
- With Plasma
 - high frequency components pass through the mask.

Schlieren Imaging

0

y (mm)

-2

-4

- 1) Plasma creation: TW laser pulse removes the single valence electron with a Prob.~1
- 2) Facilitated by λ_0 780 nm ($\Delta\lambda$ =10nm) resonant with the D2 transition (780.241 nm) of Rb at ground state
- 3) Density low 1e14 cm⁻³ → low peak intensity ~10¹²W/cm² → below threshold of self-focusing
- 4) The plasma medium is transparent
- 5) We image the missing ground state Rb atoms

The plasma profile can be modeled as

- A Plasma Core: plateau of maximum ionization r< r_0
- A Plasma Edge; sheath layer with t0 : characteristic length of the transition region.

Schlieren Imaging

- 1) Plasma creation: TW laser pulse removes the single valence electron with a Prob.~1
- 2) Facilitated by λ_0 780 nm ($\Delta\lambda$ =10nm) resonant with the D2 transition (780.241 nm) of Rb at ground state
- 3) Density low 1e14 cm⁻³ → low peak intensity ~10¹²W/cm² → below threshold of self-focusing
- 4) The plasma medium is transparent
- 5) We image the missing ground state Rb atoms

The plasma profile can be modeled as

- A Plasma Core: plateau of maximum ionization r< r_0
- A Plasma Edge; sheat layer with t0 : characteristic length of the transition region.

Schlieren Imaging

$$n_{vapor} = \sqrt{1 + \chi(\omega)}$$
$$\chi(\omega) = \frac{Ne^2}{\varepsilon_0 m_e \omega_0^2} \cdot \frac{f}{\omega_0 - \omega - i\gamma}$$

$$\eta_{\text{plasma}} = \sqrt{1 - \left(\frac{\omega_p}{\omega_L}\right)^2}$$

- Small change of refractivity
- Index of refrac. of the Rb vapor
- Need to choose the probe laser
 - Broadening: The higher the density the stronger the absorption
 - ➤ De-tuning the probe → small Δn

 $\Delta \eta \approx 10^{-4}$

Schlieren Imaging

$$n_{vapor} = \sqrt{1 + \chi(\omega)}$$
$$\chi(\omega) = \frac{Ne^2}{\varepsilon_0 m_e \omega_0^2} \cdot \frac{f}{\omega_0 - \omega - i\gamma}$$

$$\eta_{\text{plasma}} = \sqrt{1 - \left(\frac{\omega_p}{\omega_L}\right)^2}$$

- Small change of refractivity
- Index of refrac. of the Rb vapor
- Need to choose the probe laser
 - ➤ The higher the density the stronger the absorption
 - ➤ De-tuning the probe → small Δn

 $\Delta \eta \approx 10^{-4}$

Schlieren Imaging – past results

- Obtain line-out
- Frequency filter
- Peak finding

=> Derive Δ, W peak width

$$\Delta = M_{12}r_0t_0 + M_1r_0 + M_2t_0 + B$$

$$W = Q_{12}r_0t_0 + Q_1r_0 + Q_2t_0 + P$$

=> We can estimate the set {y0, **r0, t0**}

G. Demeter, et al. Optics & Laser Technology 168, 109921 (2024).

A IVAKE

100 120 140

Evaluation of the plasma

Schlieren Imaging – past results

- Obtain line-out
- Frequency filter
- Peak finding

=> Derive Δ, W peak width

$$\Delta = M_{12}r_0t_0 + M_1r_0 + M_2t_0 + B$$

$$W = Q_{12}r_0t_0 + Q_1r_0 + Q_2t_0 + P$$

=> We can estimate the set {y0, **r0, t0**}

G. Demeter, et al. Optics & Laser Technology 168, 109921 (2024).

Ex: on-resonant and off-resonant ionizing pulses

25/09/2025

A IVAKE

RANC - EAAC 2025 -

Schlieren Imaging – past results

- Successful design developed allowing:
 - evaluation of the plasma transverse size using Schlieren Imaging
 - estimation r₀ and sheath t₀ using a model
- ✓ Confirmed on-resonant ionizing laser at 780 nm of the Rubidium vapor and compatible for AWAKE
- ❖ To use it during the experiment Limitations:
 - removed to let other diagnostic
 - Radiation compatible setup needed
 - Plasma column constant along x direction of view. 1D → Cylindrical optics
 - Mask adjustable on translation stage, precision movement for a higher signal amplitude and signal filtering less distorting.
 - Tunable Probe wavelength with an active locking: "ideal" wavelength is different for each density

Content

- Introduction
- Evaluation and estimation of the plasma parameters
- Results
 - Experimental overview
 - Physics studies
- Summary & Outlook

Experimental upgrade

(Probe Laser) Gated system:

- Precise stabilization of the probe wavelength using the wavemeter
- Coupling a MZI modulator and a Delay Generator enables the control of the exposure duration
- Coupled in a 35-m-long optical fiber (radiation free)

Wavemeter Control

Example of Exposure: 100ns

25/09/2025 RANC - EAAC 2025 -

Experimental upgrade

Schlieren optical system:

Cylindrical optics

25/09/2025

- Knife edge mask with 5D alignment precision
- Camera Basler 2us
 (instead of Andor Intensified Cam)

Experimental upgrade

Fourier optics simulation comparison with the experiment

Very good agreement and spatial separation obtained

Experimental Validation

Achievements:

- Validation of the re-designed gated laser system
- Able to evaluate the full range of the Rubidium vapor source
- Suitable remote control setup

Experimental overview in AWAKE context

- Long p+ bunch propagating in plasma is <u>subject</u> to Self-Modulation (SM) instability.
- **Transform** driver bunch into a **train of shorter bunches** with a periodicity λ_{pe} .

→ The micro-bunch train can then resonantly excite large amplitude wakefields.

→ Proposed measurement: Measure the plasma transverse size asf of RiF position

Initial conditions

- 1)Plasma without protons
- 2)Proton bunch no plasma (profile obtained using a streakcam)

MAX-PLANCK-INSTITUT

 No significant seed to ionize the outer ground state Rb

- 2) A threshold
- 3) Significant halo formation

Plasma

Vapor

25/09/2025

At half the density: Behavior is essentially comparable

25/09/2025

RIF Scan

7

PRELIMINARY

Density:
3,8.10¹⁴ cm⁻³

+ p+5el0 4el4
p+10el0 4el4

3

-500 -250 0 250 500
proton delay [ps]

Earlier halo formation
When doubling the
Proton bunch population

At half the density: Behavior is essentially comparable

Summary

- Successful design developed allowing:
 - · evaluation of the plasma transverse size using Schlieren Imaging
 - · estimation r_0 and sheath t_0 using a model
- ✓ Commissioned plasma radius for the AWAKE experiment and compatible for the current runs and for the future runs configurations
- ✓ Confirmed on-resonant ionizing laser at 780 nm of the Rubidium vapor
- ✓ Validation of an inline monitoring plasma diagnostic
- ✔ Observed a plasma halo formation
- Outlook
 - Continue the data analysis: 1 day out of 6 weeks of run
 - Refine the fit models
 - More in depth simulations to link the energy deposited in the plasma

Thank you for your attention

