The Extreme Light Infrastructure

EAAC 2025

Single-mode guiding of intense laser pulses

Zsolt Lécz

Research Fellow, Particle Acceleration group

25.09.2025

25 20 15 10 19.5 19 18.5 18 17.5 -10 -15 -20 710 715 720 725 730 735 740 745 z [μm]

$$\lambda_p = \frac{c}{\omega_p} = c \sqrt{\frac{m_e \epsilon_0}{e^2 n_0}}$$

$$n_c = m_e \epsilon_0 \frac{\omega_0^2}{e^2}$$

Scaling laws in LWFA

Energy depletion length:

$$\frac{L_d}{\lambda_p} \propto \frac{n_c}{n_0}$$

 n_0 - plasma density

Rayleigh (diffraction) length:

$$\frac{L_R}{\lambda_p} = \pi \left(\frac{w_0}{\lambda_p}\right)^2 \left(\frac{n_c}{n_0}\right)^{1/2}$$

In low density plasma ($n_o \ll n_c$) the depletion length is much longer than the Rayleigh length!

Guiding is needed!

Challenges

Mode dispersion

J. E. Shrock, et. al, Phys. Rev. Lett. 133, 045002 (2024)

Each mode has different wave number (normalized to k_0):

$$\beta_{pm}^2 = 1 - \frac{4(2m+p+1)}{k^2 w^2} - \frac{n_0}{n_c}.$$

Energy leakage

A. Picksley et al., Phys. Rev. Lett. **133**, 255001 (2024)

High order modes have larger transverse wave number, they can propagate out radially.

Transverse evolution of a laser beam

Starting point:

$$\frac{\partial^2 A}{\partial t^2} - c^2 \nabla^2 A = \omega_p^2 \frac{n}{\gamma} A$$

$$A = a \exp[-i(\omega_0 t - k_0 z)]$$

$$\gamma = \sqrt{1 + a^2/2}$$

$$2i\frac{n_c}{n_0}\frac{\partial a}{\partial \zeta} = -\nabla_{\perp}^2 a + \frac{n_e}{n_0 \gamma}a$$

$$\zeta = k_0 z \qquad a = \frac{eA}{m_e c} \qquad n_e = n_0 + \delta n$$

Transverse evolution of a laser beam

Starting point:

$$\frac{\partial^2 A}{\partial t^2} - c^2 \nabla^2 A = \omega_p^2 \frac{n}{\gamma} A$$

$$A = a \exp[-i(\omega_0 t - k_0 z)]$$

$$\gamma = \sqrt{1 + a^2/2}$$

$$2i\frac{n_c}{n_0}\frac{\partial a}{\partial \zeta} = -\nabla_{\perp}^2 a + \frac{n_e}{n_0 \gamma}a$$

$$\zeta = k_0 z \qquad a = \frac{eA}{m_e c} \qquad n_e = n_0 + \delta n$$

$$\frac{\partial^2 w}{\partial z^2} = \frac{4}{k^2 w^3} (1 - K)$$

For Gaussian laser envelope!

Transverse evolution of a laser beam

Starting point:

$$\frac{\partial^2 A}{\partial t^2} - c^2 \nabla^2 A = \omega_p^2 \frac{n}{\gamma} A$$

$$A = a \exp[-i(\omega_0 t - k_0 z)]$$

$$\gamma = \sqrt{1 + a^2/2}$$

$$2i\frac{n_c}{n_0}\frac{\partial a}{\partial \zeta} = -\nabla_{\perp}^2 a + \frac{n_e}{n_0 \gamma}a$$

$$\zeta = k_0 z$$
 $a = \frac{eA}{m_e c}$ $n_e = n_0 + \delta n$

Applying the SDE method*.

$$\frac{\partial^2 w}{\partial z^2} = \frac{4}{k^2 w^3} (1 - K)$$

For Gaussian laser envelope!

*P. Sprangle et al., Phys Rev A 36, 2773 (1987)

Relativistic self-guiding condition!

The laser spot size remains constant!

Why not self-guide?

- 1. The laser beam does not remain Gaussian
- 2. In the self-guiding model the density modulation is neglected!
- 3. The laser pulse has a temporal envelope, which changes in time: Self-phase modulation!

Why not self-guiding?

- 1. The laser beam does not remain Gaussian
- 2. In the self-guiding model the density modulation is neglected!
- 3. The laser pulse has a temporal envelope, which changes in time: Self-phase modulation!

Non-uniform guiding

https://arxiv.org/abs/2412.14785v2

The front side and back sides of the laser pulse have different guiding conditions!

Non-uniform guiding

https://arxiv.org/abs/2412.14785v2

The front side and back sides of the laser pulse have different guiding conditions!

$$\delta n \approx -g(\xi) \frac{4a_0^2 \exp(-2s^2)}{k_p^2 w_0^2 \sqrt{1 + (a_0^2/2) \exp(-2s^2)}}, \ s = r/w_0.$$

Mode-preserving guiding

$$n_{e0} \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b}\right), b > 2$$

$$n_e = Fn_0 \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b} + \delta n \right)$$

$$2i\frac{n_c}{n_0}\frac{\partial a_{\xi}}{\partial \tau} = -\nabla_{\perp}^2 a_{\xi} + \frac{n_e}{n_0 \gamma} a_{\xi}$$
$$\chi = \frac{F(r)}{\gamma}$$

))))) eli

$$n_{e0} \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b}\right), b > 2$$

$$n_e = Fn_0 \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b} + \delta n \right)$$

$$2i\frac{n_c}{n_0}\frac{\partial a_{\xi}}{\partial \tau} = -\nabla_{\perp}^2 a_{\xi} + \frac{n_e}{n_0 \gamma} a_{\xi}$$

$$\chi = \frac{F(r)}{\gamma}$$

Mode-preserving guiding

For single-mode guiding (mode matching) the **susceptibility** has to be a **parabolic** function of r:

$$\frac{F}{\gamma} \approx \frac{1 + \epsilon \frac{r^b}{r_c^b} + \delta n}{\gamma(r)} = \frac{1}{\gamma_0} + \kappa \frac{4r^2}{k_p^2 w_0^4}$$

 κ - focusing strength of the channel

When $\kappa=1$ and b=2, $\gamma\approx 1$ the "traditional" perfect guiding is achieved, were the spot size remains constant.

$$n_{e0} \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b}\right), b > 2$$

$$n_e = Fn_0 \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b} + \delta n \right)$$

It is a curve fitting problem!

Realistic plasma channel

For single-mode guiding (mode matching) the **susceptibility** has to be a **parabolic** function of r:

$$n_{e0} \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b}\right), b > 2$$

$$n_e = Fn_0 \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b} + \delta n \right)$$

It is a curve fitting problem!

These two curves can (almost) overlap in a wide channel $(r_c > \lambda_p)!$

Realistic plasma channel

For single-mode guiding (mode matching) the **susceptibility** has to be a **parabolic** function of r:

$$n_{e0} \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b}\right), b > 2$$

$$n_e = Fn_0 \approx n_0 \left(1 + \epsilon \frac{r^b}{r_c^b} + \delta n \right)$$

For $\delta n = 0$, in the middle of the pulse:

For single-mode guiding (mode matching) the susceptibility has to be a **parabolic** function of r:

$$\frac{F}{\gamma} \approx \frac{1 + \epsilon \frac{r^b}{r_c^b} + \delta n}{\gamma(r)} = \frac{1}{\gamma_0} + \kappa \frac{4r^2}{k_p^2 w_0^4}$$

$$k_p^2 w_0^2 = \frac{4\gamma_0 s^{*2} \kappa (1 - 2/b)}{\gamma_0 / \gamma^* - 1}, \qquad r_c = r^* \left(\frac{8\kappa \gamma^* s^{*2}}{b\epsilon k_p^2 w_0^2}\right)^{-1/b}$$

$$\gamma_0 = \sqrt{1 + a_0^2/2}, \quad s^* = \frac{r^*}{w_0} \approx 1.5$$

$$r_c = r^* \left(\frac{8\kappa \gamma^* s^{*2}}{b\epsilon k_p^2 w_0^2} \right)^{-1/b}$$

https://arxiv.org/abs /2412.14785v2

Particle-in-cell simulations (FBPIC)

Very brief condition for mode matching:

$$r_c > \lambda_p > w_0$$
 and $a_0 > 2$.

Particle-in-cell simulations (FBPIC)

Mode dispersion is clearly visible!

Periodic self-injection of electrons

1D wave-breaking field: $E_{wb,rel} = E_{p,0} \sqrt{2(\gamma_p - 1)}$.

Mode evolution

 $^{\text{d}}_{\text{m}}^{\text{m}}$ 0.6

0.5

0.8 Wide Narrow channel channel 0.7

4

1.6

1.4

1.2

8.0

0.6

 $r_c = 40 \mu m$

 $\times 10^{-4}$

6

 n_0/n_c

Mode evolution

Mode evolution

Coincidence?

A. Picksley et al., Phys. Rev. Lett. 133, 255001 (2024)

Coincidence?

Conclusions

- HOFI channels are not infinite guiding structures, high-order radial modes can "leak out".
- Only one (single) mode can be guided if the susceptibility is a second-degree polynomial in r.
- The fundamental (Gaussian) mode can modify the channel density to form a parabolic profile. Finding the optimal parameters leads to **mode matching**.
- With this new matching condition the LWFA can be more efficient.

$$r_c > \lambda_p > w_0$$
 and $a_0 > 2$.

• Future plans: control over the self-injection and optimization of the energy gain.

7th User Call

https://up.eli-laser.eu/news/1739522201/preannouncement-7th-eli-user-call-to-open-on-23rdseptember-1739522201

Thank you for your attention!

Backup slides!

Wave equation for laser pulses

$$\nabla_{\perp}^{2} A + 2 \frac{v_g}{c^2} \frac{\partial^2 A}{\partial \tau \partial \xi} + \frac{1}{\gamma_g^2} \frac{\partial^2 A}{\partial^2 \xi} = k_p^2 \frac{n_e(\xi, r)}{n_0 \gamma} A$$

$$A = a(\xi, r, \tau) \exp(-ik\xi)$$

$$\xi = z - v_g t$$

$$v_g = c \sqrt{1 - \frac{n_0}{n_c}}$$

$$\frac{1}{\gamma_g^2} = 1 - \frac{v_g^2}{c^2} = \frac{n_0}{n_c}$$

Wave equation for laser pulses

$$\nabla_{\perp}^{2} A + 2 \frac{v_{g}}{c^{2}} \frac{\partial^{2} A}{\partial \tau \partial \xi} + \frac{1}{\gamma_{g}^{2}} \frac{\partial^{2} A}{\partial^{2} \xi} = k_{p}^{2} \frac{n_{e}(\xi, r)}{n_{0} \gamma} A$$

This term can be neglected if the plasma density is low!

$$2i\frac{n_c}{n_0}\frac{\partial a_{\xi}}{\partial \tau} = -\nabla_{\perp}^2 a_{\xi} + \frac{n_e}{n_0 \gamma} a_{\xi}$$

$$A = a(\xi, r, \tau) \exp(-ik\xi)$$

$$\xi = z - v_g t$$

$$v_g = c \sqrt{1 - \frac{n_0}{n_c}}$$

$$\frac{1}{\gamma_g^2} = 1 - \frac{v_g^2}{c^2} = \frac{n_0}{n_c}$$

If group velocity dispersion can be neglected ($n_0 \ll n_c$), one Helmholtz equation holds in each longitudinal (ξ) slice of the laser pulse.

Pulse propagation is not self-similar

z (mm)

Self-generated parabolic channel

The laser pulse modifies the plasma density and generates a gamma distribution, which ensures a parabolic susceptibility in the radial direction!

Realistic (HOFI) plasma channel

Numerical examples

$$2i\frac{n_c}{n_0}\frac{\partial a}{\partial \zeta} = -\nabla_{\perp}^2 a + \frac{n_e}{n_0 \gamma}a$$

$$n_{e0} = n_0 \left(1 + \epsilon \frac{r^b}{r_c^b} \right), b = 4$$

Main parameters:

$$\epsilon = 1.45$$

$$a_0 = 2.5$$

$$n_0 = 3 \times 10^{17} \ cm^{-3}$$

Solving it with the operatorsplitting method:

$$\kappa = 1.5$$

Numerical examples

$$2i\frac{n_c}{n_0}\frac{\partial a}{\partial \zeta} = -\nabla_{\perp}^2 a + \frac{n_e}{n_0 \gamma}a$$

Solving it with the operatorsplitting method:

Matched

Mismatched

Narrow and wide channels

$$n_e = n_0 \left(1 + \epsilon \frac{r^b}{r_c^b} \right) \exp\left(-\frac{\beta r^p}{r_c^p} \right)$$

Narrow and wide channels

$$n_e = n_0 \left(1 + \epsilon \frac{r^b}{r_c^b} \right) \exp\left(-\frac{\beta r^p}{r_c^p} \right)$$