Diagnostics for plasma ion and electron heat flow

J. Cowley, I. Najmudin, J. P. Diaz, M. Huck, H. Jones, S. Wesch, J. Wood & R. D'Arcy

John Adams Institute

The importance of heating in wakefield accelerators

> Plasma accelerators are in many ways close to being ready for applications

- > Energy transfer efficiency > 40 %
- Accelerating fields > GV/m
- > Beam quality maintained during acceleration
 - > Energy spread, emittance, charge

But significant challenges remain

- Most applications require > thousands events/second to achieve required brilliance/luminosity
- > Putting all of the achievements above together creates new challenges
- > Target design and plasma need to cope with the average power deposited
 - Discharge

James Cowley

- > Energy deposited by driver
- > ...

Heating and cooling mechanisms in PWFA

Timescales range from very short (femtosecond) to very long (millisecond)

- > Gas is ionised by high-voltage discharge
 - > Ohmic heating of plasma from discharge current
- Drive bunch/laser creates wake
 - > Witness/injected electron bunch removes energy
- > Hot plasma electrons transfer energy
 - > electrons > fields > ions > capillary

Zgadzaj, R., Silva, T., Khudyakov, V.K. et al.

Dissipation of electron-beam-driven plasma wakes. *Nat Commun* **11**, 4753 (2020).

> This creates significant difficulty in simulations of heat flow

We know that the plasma and target are heated but a quantitative start-to-finish understanding of heat flow is difficult to achieve - in simulations or experiments

UNIVERSITY OF OXFORD

James Cowley

What will limit repetition rate?

- Experiments using witness bunch as a diagnostic have been performed
 - > ~10-100 ns minimum time between accelerating bunches
- We already know that heating the plasma has implications for acceleration
 - Shortening of plasma frequency
 - > 'Smearing' of plasma density distributions
- > The plasma needs in a consistent state at the start of each acceleration process
- Beam based diagnostics could not differentiate between e.g. a change in density and and change in temperature
- > This is a start but is far from showing the whole picture
- Other diagnostics are necessary to detangle competing effects...

D'Arcy, R., Chappell, J., Beinortaite, J. et al. Recovery time of a plasma-wakefield accelerator. *Nature* **603**, 58–62 (2022)

Pompili, R., Anania, M.P., Biagioni, A. *et al.* Recovery of hydrogen plasma at the subnanosecond timescale in a plasma-wakefield accelerator. *Commun Phys* **7**, 241 (2024)

Temperature effects in plasmas

- Other diagnostics are necessary to detangle competing effects...
- Beam based diagnostics may not differentiate between e.g. a change in density and and change in temperature

 $n_e = 1 \times 10^{16} \text{ cm}^{-3}$ $T_e = 100 \text{ eV}$

Other specialist diagnostics need to be developed to see the full picture

Change in density

OR

Change in temperature?

HiPE laboratory

- > Aim: develop tools to understand the thermodynamics of plasma accelerators
 - > Experiments and simulation
 - > Simulations Ibrahim Najmudin's talk
- Developing a suite of diagnostics to experimentally measure temperature effects in plasma accelerators at new laboratory in Oxford - HiPE lab
 - Map heat transport in space and time
- Be able to transport to facilities to observe effects of acceleration
 - All-optical and minimally invasive; run 'parasitically'
- > What are the implications for the acceleration process in current and future accelerators?

desired energy flow

temperature diagnostics

HiPE laboratory

- > Aim: develop tools to understand the thermodynamics of plasma accelerators
 - > Experiments and simulation
 - > Simulations Ibrahim Najmudin's talk
- Developing a suite of diagnostics to experimentally measure temperature effects in plasma accelerators at new laboratory in Oxford - HiPE lab
 - Map heat transport in space and time
- Be able to transport to facilities to observe effects of acceleration
 - All-optical and minimally invasive; run 'parasitically'
- What are the implications for the acceleration process in current and future accelerators?

Driving Bunch

Wakefields

Trailing Bunch

inefficiencies to plasma

Electrons

Ions

Module

Thomson

Scattering

Laser-absorption

Spectroscopy

Common-path
Interferometry

temperature diagnostics

OXFORD James Cowley

Target

- > ~1-10 mbar, optical path length 2 cm
- Designed by Oslo University group as plasma lens - easy change of length, material etc
- Cell filled via pulsed solenoid valve from argon buffer volume
 - > 2 10 mbar in cell
 - $> n \sim 10^{17} \text{ cm}^{-3}$
 - > 1 mm diameter
- > Thyratron switch based discharge:
 - > Capacitor bank charged to 10 20 kV
 - > Repetition rate ~ 1 Hz
 - Limited by gas load on vacuum pumps

Credit: C. Linstrøm, P. Drobniak

Above: Mounted 2 cm sapphire cell

Below: Implementation in Oxford HiPE lab

James Cowley

Laser absorption spectroscopy

- We expect most of the 'medium term' (microsecond scale) energy to be in the ions
 - > e.g. ion acoustic wave
 - > if ions are in LTE then can infer temperature from electrons
- Laser absorption spectroscopy (LAS) can provide a temperature measurement of any species that has a transition between energy levels that can be accessed using a narrow bandwidth laser
- > We target transitions in excited argon (neutral or ionised) created by heating from HV discharge
- c.f. Optical emission spectroscopy

Involves fewer assumptions

Can track temperature over much longer timescales/different regimes of operation

Doesn't require hydrogen

	Lower state	Upper state	Transition Wavelength (vacuum) / nm
Excited neutral (Ar I*)	4s	4p	763.721
lonised (Ar II)	3d ⁴ F	4p ² D°	640.098

OXFORD **James Cowley** EAAC 2025, Elba Page 9

Laser absorption spectroscopy - method

> Laser with initial intensity I_0 travelling distance x through plasma with mass density ρ is given by $I(x) = I_0 e^{-\kappa \rho x}$

absorption =
$$\ln \frac{I_0}{I} = \kappa \rho x$$

- Due to Doppler shift, the frequency of laser absorption is dependent on the particles' velocities
 - Saussian broadening from temperature convolved with Lorentzian component from pressure

$$\Delta \nu_{FWHM} = \frac{1}{\lambda_0} \sqrt{\frac{8k_B T \ln(2)}{m}}$$

- Laser bandwidth << broadened line width</p>
- > Time-resolved measurement limited by:
 - > State lifetime
 - > Photodiode & oscilloscope speed, electrical noise

25 mbar Argon absorption with diode wavelength (nm)

Laser absorption spectroscopy - method

> ~10 mbar, optical path length 2 cm

Laser absorption spectroscopy - results

Trace acquisition and analysis process

- > 20-100 shots per wavelength; average photodiode output into a single trace
- > Convert -> absorption

James Cowley

- > Absorption vs. frequency at each time slice t
 - VCSEL calibration converts diode current to wavelength output
- > Fit Voight profile with free parameters:
 - Amplitude, FWHM, position of Gaussian, Lorentzian
- > Convert Gaussian FWHM to temperature

5 mbar Argon absorption with diode wavelength (nm)

5 mbar Argon absorption, Gaussian fit

Laser absorption spectroscopy - results

Wavelength scan - features

Wavelength scan ~4 mbar, 15 kV

Laser absorption spectroscopy - results

Temperature extraction (is)

Plasma cell temperature diagnostic

- > Sapphire capillary expands as it heats increasing optical path length
- > CW laser used as probe to relate a (calibrated) phase shift to a temperature change

- Common optical path interferometer reduces vibrations & noise; totally non-invasive measurement
- Bottom half of laser beam passes through the capillary (probe); the top half through vacuum (reference).
- Beamsplitters create a copy of the beam and shift one copy onto the other, creating an interference pattern.
- > Changes in phase result in shifting fringes on camera.

OXFORD James Cowley

EAAC 2025, Elba

Page 15

Plasma cell temperature diagnostic - data

- > The analysis follows standard interferometric methods
 - > This allows for a 2D time-evolving map of the cell temperature to be extracted, over the area covered by the probe beam.
- Alternatively a radial line out of the capillary can be taken and consecutive shots plotted at a waterfall to quickly visualise the phase shift:

Plasma cell temperature diagnostic - data

- Diagnostic was calibrated for capillaries used at FLASHForward in the DESY ADVANCE lab
 - Calibration needs to be performed on an identical capillary to produce an accurate phase shift to temperature change mapping
- > Capillary heated high-repetition rate discharge to calibrate phase shift to temperature change.
- As capillary heated, temperature measured using PT1000 probes and fibre-optic thermometer; compared with the phase accumulated.
- > Notes:
 - > Can only determine temperature change
 - > Requires knowledge of initial temperature (room temperature) and constant tracking

Page 17

James Cowley

EAAC 2025, Elba

Plasma cell temperature diagnostic - data

Outlook

- > Ability to determine missing energy channels
- Calculation of efficiencies
- > Will determine if active cooling is required
- More experiments in an accelerator need to be done to determine the above

Conclusions

- > The heat flow and temperature changes that occur in plasma accelerators could potentially place fundamental limits on aspects of their performance e.g. repetition rate.
- New diagnostics are required in order to provide a full understanding of the deposition and transport of heat during and after the acceleration events
- The range of timescales involved makes simulations difficult, and experiments may have to lead the charge.
- We are developing diagnostics for time-resolved ion and electron temperature and density throughout the discharge and acceleration process, as well as monitoring the cell temperature.
 - Non-invasive (all-optical), able to operate in parallel at facilities.

Wavelength scan - 2025-07-23 - Run 4

