

Curved hydrodynamic optical-field-ionised waveguides

<u>Darren Zeming Chan</u>,¹ J. Chappell,¹ L. Feder,¹ B. Greenwood,¹ A. Harrison,¹ S. Kaloš,¹ R. Lahaye,¹ D. McMahon,¹ J. Thistlewood,¹ S. Thorpe,^{2,3} R. Walczak,¹ and S. Hooker¹

¹ Department of Physics, University of Oxford
² Department of Chemistry, University of Oxford

Applications of curved plasma waveguides

Applications of curved plasma waveguides

Applications of curved plasma waveguides

Simulations of staging with curved plasma waveguides

Multistage LWFA schemes

- No curved channels staging experiment has yet been performed
- All studies so far have used discharge capillaries, which are prone to laser damage especially at high pulse repetition rates

From: Nature **530**, 190–193 (2016) From: Phys. Rev. Lett. **120**, 154801 (2018) From: Phys. Rev. Lett. **130**, 215001 (2023)

Hydrodynamic optical-field-ionised plasma channels (HOFIs)

- Alternative plasma channel developed by the Oxford Group suitable for kHz rep rates
- Immune to laser damage
- Guiding of pulse in curved section is important due to ionisation of neutrals

Curved channel goals and setup

- Need capture efficiency ~100% and percent-level emittance growth for applications
- 2D simulations with full PIC code WarpX to model channel wall ionisation

Curved channel goals and setup

- Need capture efficiency ~100% and percent-level emittance growth for applications
- 2D simulations with full PIC code WarpX to model channel wall ionisation
- Channel follows cubic curvature function with a displacement of 200 µm over 120 mm
- Minimises transverse laser pulse oscillations

Curved channel goals and setup

- Need capture efficiency ~100% and percent-level emittance growth for applications
- 2D simulations with full PIC code WarpX to model channel wall ionisation
- Channel follows cubic curvature function with a displacement of 200 µm over 120 mm
- Minimises transverse laser pulse oscillations

Pulse offset derived in:Phys. Rev. Lett. 120, 154801 (2018)

Optimisation of the staging scheme

- Laser pulse and channel parameters:
 - $a_0 = 2$, $w_0 = 50 \mu m$, $E_0 = 15 J$, $\tau_{FWHM} = 42 fs$, $n_0 = 2.5 \times 10^{17} cm^{-3}$
- Bunch charge increased from 1pC to 45 pC for beam-loading and blowout enhancement

Optimisation of the staging scheme

- Laser pulse and channel parameters:
 - $a_0 = 2$, $w_0 = 50 \mu m$, $E_0 = 15 J$, $\tau_{FWHM} = 42 fs$, $n_0 = 2.5 \times 10^{17} cm^{-3}$
- Bunch charge increased from 1pC to 45 pC for beam-loading and blowout enhancement
- σ_x and σ_{px} chosen to give initial emittance of 1 mm mrad
- Bunch energy increased from 1 GeV to
 10 GeV for rigidity and magnetic self-focusing
 - 100% capture efficiency achieved, but...

Challenges for the staging scheme

- Bunch passes through strong asymmetric transverse wakefields
- Emittance increases by >1000X

Challenges for the staging scheme

- Bunch passes through strong asymmetric transverse wakefields
- Emittance increases by >1000X
- Laser pulse guiding
- Bunch capture
- Emittance preservation
- Need to identify methods to suppress the transverse fields in injection region

Suppressing wakefields in coupling region

Suppressing wakefields in coupling region

Suppressing wakefields in coupling region

Staging in the linear regime

- Scanned by hand:
 - Off-resonant plasma density
 - Bunch position relative to pulse train

Staging in the linear regime

- Scanned by hand:
 - Off-resonant plasma density
 - Bunch position relative to pulse train
- Transverse fields strongly suppressed!
- Emittance growth <10X (vs >1000X)
- Preliminary result, further improvements possible

Pulse extraction setup

- Goal: Maximise transverse displacement of laser pulse while minimising transverse displacement and emittance growth of bunch
- Same pulse and bunch parameters as in staging scheme
- HiPACE++ for 500-mm long propagation in straight section

Pulse extraction results

- If laser pulse is properly depleted, emittance growth of bunch is controllable!
- Next step: compare emittance growth to plasma-mirror tape ejection schemes

Experimental demonstration of curved plasma waveguides

Trajectory control of Bessel foci

- To generate curved HOFI channels in the lab, channel-forming Bessel beam must follow a curved trajectory
- Exploits linear relation between r, the radial position at which light enters the axicon, and z, the longitudinal position along focus

Phase plate curve results

- Tested in our pulsed Ti:sapph beamline with kHz rep rate and 15 nm bandwidth
- Observed curved trajectory displacements >10 spot sizes over a distance of 120 mm with Bessel focus robust against laser pulse chromaticity

Phase plate curve results

- Tested in our pulsed Ti:sapph beamline with kHz rep rate and 15 nm bandwidth
- Observed curved trajectory displacements >10 spot sizes over a distance of 120 mm with Bessel focus robust against laser pulse chromaticity
- Conducting a highpower HOFI generation experiment with displaced channel-forming beam

Conclusions and future work

- Curved HOFI waveguides are useful for a variety of applications
- Staging: Emittance growth is issue in quasilinear regime
- Can be mitigated by using pulse train to suppress wake excitation in coupling section
- Drive pulse extraction: Feasible without perturbing electron bunch
- Future work:
 - Generation & guiding in curved HOFI channels
 - Improve efficiency of phase plates (grayscale etching)

References

Stephen Myers and Herwig Schopper, eds. Accelerators and colliders. eng. Particle physics reference library / Herwig Schopper (editor) volume 3. Cham: Springer Open. 2020.

A. P. Chernyaev and S. M. Varzar. "Particle accelerators in modern world". en. In: Physics of Atomic Nuclei 77.10 (Oct. 2014), pp. 1203—1215. URL: https://doi.org/10.1134/S1063778814100032 (visited on 07/31/2023).

Matthias Fuchs et al. "Laser-driven soft-X-ray undulator source". en. In: Nature Physics 5.11 (Nov. 2009), pp. 826–829. URL:

https://www.nature.com/articles/nphys1404 (visited on 07/31/2023).

S. M. Hooker. "Developments in laser-driven plasma accelerators". en. In: Nature Photonics 7.10 (Oct. 2013), pp. 775–782. URL:

https://www.nature.com/articles/nphoton.2013.234 (visited on 07/31/2023).

John Galayda, "The LCLS-II: A High Power Upgrade to the LCLS", en. In: Proceedings of the 9th Int. Particle Accelerator Conf. IPAC2018 (2018), 6 pages, 3.180 MB, URL:

http://jacow.org/ipac2018/doi/JACoW-IPAC2018-MOYGB2.html (visited on 07/31/2023).

Nanshun Huang et al. "Features and futures of X-ray free-electron lasers". en. In: The Innovation 2.2 (May 2021), p. 100097, URL:

https://www.sciencedirect.com/science/article/pii/S2666675821000229 (visited on 08/02/2023).

T. Tajima and J. M. Dawson. "Laser Electron Accelerator". In: *Physical Review Letters* 43.4 (July 1979), pp. 267–270, URL:

https://link.aps.org/doi/10.1103/PhysRevLett.43.267 (visited on 07/31/2023).

Laser-driven particle acceleration towards radiobiology and medicine. New York, NY: Springer Berlin Heidelberg, 2016.

E. Esarey, C. B. Schroeder, and W. P. Leemans. "Physics of laser-driven plasma-based electron accelerators". In: Reviews of Modern Physics 81.3 (Aug. 2009). pp. 1229-1285. URL:

https://link.aps.org/doi/10.1103/RevModPhys.81.1229 (visited on 07/31/2023).

Johannes Wenz and Stefan Karsch. "Physics of Laser-Wakefield Accelerators (LWFA)". In: (2020). URL: https://arxiv.org/abs/2007.04622 (visited on 07/31/2023).

J. Luo et al. "Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels". en. In: Physical Review Letters 120.15 (Apr. 2018), p. 154801. Uni: [https://link.aps.org/doi/10.1103/PhysRevLett.120.154801] (visited on 07/31/2023).

C. B. Schroeder et al. "Physics considerations for laser-plasma linear colliders". en. In: Physical Review Special Topics - Accelerators and Beams 13.10 (Oct. 2010), p. 101301. URL: https://link.aps.org/doi/10.1103/PhysRevSTAB.13.101301 (visited on 08/12/2023).

S. Steinke et al. "Multistage coupling of independent laser-plasma accelerators". en. In: Nature 530.7589 (Feb. 2016), pp. 190–193. URL:

https://www.nature.com/articles/nature16525 (visited on 07/31/2023).

Xinzhe Zhu et al. "Experimental Demonstration of Laser Guiding and Wakefield Acceleration in a Curved Plasma Channel". en. In: Physical Review Letters 130.21 (May 2023), p. 215001. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.130.215001 (visited on 07/31/2023).

H. M. Milchberg et al. "Channel guiding for advanced accelerators". en. In: AIP Conference Proceedings. Vol. 356. Austin, Texas (USA): AIP, 1996, pp. 247–257. URL: https://pubs.aip.org/aip/acp/article/356/1/247-257/746919 (visited on 08/13/2023).

D. J. Spence and S. M. Hooker. "Investigation of a hydrogen plasma waveguide". en. In: Physical Review E 63.1 (Dec. 2000), 0.15401. URL: https://link.ass.org/doi/10.1103/PhysRevE.63.015401 (visited on

A. Butler, D. J. Spence, and S. M. Hooker. "Guiding of High-Intensity Laser Pulses with a Hydrogen-Filled Capillary Discharge Waveguide". In: *Physical Review Letters* 89,18 (Oct. 2002), p. 185003, URL:

https://link.aps.org/doi/10.1103/PhysRevLett.89.185003 (visited on 07/31/2023).

08/16/2023).

07/31/2023).

R. J. Shalloo et al. "Hydrodynamic optical-field-ionized plasma channels". en. In: Physical Review E 97.5 (May 2018), p. 053203. URL: https://llnk.aps.org/doi/10.1103/PhysRevE.97.053203 (visited on

A. Picksley et al. "Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels", en. In: *Physical Review E* 102.5 (Nov. 2020), p. 053201. URL: https://link.aps.org/doi/10.1103/PhysRevE.102.053201 (visited on 07/31/2023).

A. Picksley et al. "Gulding of high-intensity laser pulses in 100-mm-long hydrodynamic optical-field-ionized plasma channels". In: Physical Review Accelerators and Beams 23.8 (Aug. 2020), p. 081303. URL: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.081303 (visited on 07/31/2021). B. Miao et al. "Multi-GeV Electron Bunches from an All-Optical Laser Wakefield Accelerator". In: *Physical Review X* 12.3 (Sept. 2022). Publisher: American Physical Society, p. 031038. URL:

https://link.aps.org/doi/10.1103/PhysRevX.12.031038 (visited on 08/16/2023).

Luca Fedeli et al. "Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers". In: SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. ISSN: 2167-4337. Nov. 2022, pp. 1–12.

O. Jakobsson, S. M. Hooker, and R. Walczak, "Gev-Scale Accelerators Driven by Plasma-Modulated Pulses from Kilohertz Lasers", en. In: *Physical Review Letters* 127.18 (Oct. 2021), p. 184801, URL:

https://link.aps.org/doi/10.1103/PhysRevLett.127.184801 (visited on 07/31/2023).

J. J. van de Wetering, S. M. Hooker, and R. Walczak. "Stability of the modulator in a plasma-modulated plasma accelerator". In: Physical Review E 108.1 (July 2023), p. 015204. URL: https://link.aps.org/doi/10.1103/PhysRevE.108.015204 (visited on 07/31/2023).

L. Feder et al. "Self-waveguiding of relativistic laser pulses in neutral gas channels".
en. In: Physical Review Research 2.4 (Nov. 2020), p. 043173. URL:
hhttps://link.aps.org/doi/10.1103/PhysRevResearch.2.043173 (visited on 07/31/2023).

James Chappell. Personal communication. July 2023.

Ioannis D. Chremmos and Nikolaos K. Efremidis. "Nonparaxial accelerating Bessel-like beams". en. In: *Physical Review A* 88.6 (Dec. 2013), p. 063816. URL: https://link.aps.org/doi/10.1103/PhysRevA.89.063816 (visited on 07/31/2023).

Juanying Zhao et al. "Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories". en. In: Optics Letters 38.4 (Feb. 2013), p. 498. URL: https://opg.optica.org/abstract.cfm?URI-ol-38-4-498 (visited on 07/31/2023).

Vygandas Jarutis et al. "Spiraling zero-order Bessel beam". en. In: $Optics\ Letters\ 34.14$ (July 2009), p. 2129. URL:

https://opg.optica.org/abstract.cfm?URI=ol-34-14-2129 (visited on 07/31/2023).

Aidas Matijošius, Vygandas Jarutis, and Algis Piskarskas. "Generation and control of the spiraling zero-order Bessel beam". en. In: Optics Express 18.9 (Apr. 2010), p. 8767. URL: https://opg.optica.org/oe/abstract.cfm?uri=oe-18-9-8767 (visited on 07/31/2023).

Yanke Li et al. "Flexible trajectory control of Bessel beams with pure phase modulation". en. In: Optics Express 30.14 (July 2022), p. 25661. URL: https://opg.optica.org/abstract.cfm?URI-oe-30-14-25661 (visited on 07/31/2023).