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High-Repetition-Rate Plasma Acceleration

> Goal: Implement plasma accelerators into operational facilities - FEL's and Linear Colliders

Opuncnt, 0,
Colider Luminosity: L o« ————— FEL Instantaneous Brightness:  dB/dt o« —————
OxOy 0,0,0F

> Requirement: Demonstrate stable operation of plasma accelerator stages at competitively high repetition rates.
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High-Repetition-Rate Plasma Acceleration

> Goal: Implement plasma accelerators into operational facilities - FEL's and Linear Colliders

Opuncnt, 0,
Colider Luminosity: L o« ————— FEL Instantaneous Brightness:  dB/dt o« —————
OxOy 0,0,0F

> Requirement: Demonstrate stable operation of plasma accelerator stages at competitively high repetition rates.

> Challenges: For high repetition rates, we need to reuse the plasma, so to maintain consistent quality of
acceleration for many bunches, we need,
> CGonsistent plasma densities / plasma profiles
> Durable plasma sources / containers
> Jo keep the plasma temperature low (or consistent?)

> Why care about plasma temperature? Plasma acceleration is not totally efficient, so any energy from the
driver that is not extracted by the witnhess, makes it’'s way into and through the plasma. An increased plasma
temperature then effectively changes the plasma frequency e.g via the Bohm-Gross dispersion relation:
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Effect of plasma temperature on non-linear wakefields
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Effect of plasma temperature on non-linear wakefields
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Naive assumptions to form an iterative PIC loop

> What kind of temperatures are expected?

> Worst case scenario: Plasma takes all deposited energy from the bunches and splits it evenly among the
electrons and ions, leading to a corresponding rise Iin plasma temperature
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Naive assumptions to form an iterative PIC loop

> What kind of temperatures are expected?

> Worst case scenario: Plasma takes all deposited energy from the bunches and splits it evenly among the
electrons and ions, leading to a corresponding rise Iin plasma temperature
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> Runaway effect: Becomes more inefficient with increasing plasma temperature
> QObvious shortcomings: No sinks in energy + no plasma evolution
> Hot and fast electrons carry a large portion of the initial wakefield energy
> Heated ions cause excitation and ionisation of background neutral atoms
> Plasma density and temperature distribution for each next bunch may not be uniform
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Naive assumptions to form an iterative PIC loop

What kind of temperatures are expected?

Worst case scenario: Plasma takes all deposited energy from the bunches and splits it evenly among the
electrons and ions, leading to a corresponding rise in plasma temperature
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Obvious snortcomings: NO SINKS N energy + No plasma evoluliC
Hot and fast electrons carry a large portion of the initial wakefield energy
Heated ions cause excitation and ionisation of background neutral atoms
Plasma density and temperature distribution for each next bunch may not be uniform
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What is known to happen after wakefield acceleration events?

T R TR WP 117 9
fs - ps ns LS ms

Source: Gilljohann et al.
Phys. Rev. X. 9, 011046

(2019) v lon cone observed using shadowgraphy
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What is known to happen after wakefield acceleration events?
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What is known to happen after wakefield acceleration events?
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What is known to happen after wakefield acceleration events?
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What tools are available to simulate plasmas on long timescales?

> @Goal: Simulate long timescales of plasma evolution after the intense & nonlinear perturbation from a driver
> Typically, PIC codes are used to guide experiments

> This is currently not the case for long timescale plasma studies
> Need a self-consistent framework to inform future experimental programs and facility designs (ad-hoc)
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What tools are available to simulate plasmas on long timescales?

> Goal: Simulate long timescales of plasma evolution after the intense & nonlinear perturbation from a driver
> Typically, PIC codes are used to guide experiments
> This is currently not the case for long timescale plasma studies
> Need a self-consistent framework to inform future experimental programs and facility designs (ad-hoc)

> How:
> 3D PIC codes are most suitable and most commonly used for short timescales involved in plasma wakefield

excitation (fs—ps)
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What tools are available to simulate plasmas on long timescales?

> @Goal: Simulate long timescales of plasma evolution after the intense & nonlinear perturbation from a driver
> Typically, PIC codes are used to guide experiments
> This is currently not the case for long timescale plasma studies
> Need a self-consistent framework to inform future experimental programs and facility designs (ad-hoc)
> How:
> 3D PIC codes are most suitable and most commonly used for short timescales involved in plasma wakefield
excitation (fs—ps)

> MHD/Fluid codes are common to use for bulk plasma evolution effects on longer timescales (ns—us)
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What tools are available to simulate plasmas on long timescales?

> Goal:

Simulate long timescales of plasma evolution after the intense & nonlinear perturbation from a driver

> Typically, PIC codes are used to guide experiments

> This is currently not the case for long timescale plasma studies
> Need a self-consistent framework to inform future experimental programs and facility designs (ad-hoc)

> How:
> 3D
exc

> MH

P|C codes are most suitable and most commonly used for short timescales involved in plasma wakefield

itation (fs—ps)

D/Fluid codes are common to use for bulk plasma evolution effects on longer timescales (s —Lis)

> Middle Ground: The Quasi-Static Approximation (QSA)
> Used to separate the timescales involved in plasma evolution and driver evolution
> A single timestep Iin driver evolution allows us to focus on the plasma evolution!
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Can the QSA accurately describe extended timescales?
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> How:

> FBPIC : Propagate the beam forward in time through a stationary plasma




Can the QSA accurately describe extended timescales?
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> How:

> FBPIC : Propagate the beam forward in time through a stationary plasma
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Can the QSA accurately describe extended timescales?

> How:
> FBPIC : Propagate the beam forward in time through a stationary plasma
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> How:
> FBPIC : Propagate the beam forward in time through a stationary plasma
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Can the QSA accurately describe extended timescales?
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> How:
> FBPIC : Propagate the beam forward in time through a stationary plasma
> HIPACE++ : Propagate the plasma backwards in time past a stationary lbeam
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Can the QSA accurately describe extended timescales?
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> How:
> FBPIC : Propagate the beam forward in time through a stationary plasma
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Can the QSA accurately describe extended timescales?

> How:
> FBPIC : Propagate the beam forward in time through a stationary plasma
> HIPACE++ : Propagate the plasma backwards in time past a stationary lbeam
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Can the QSA accurately describe extended timescales?
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> Preliminary benchmarking beyond the first bubble:

> Typically, comparisons of QSA-PIC codes ensure that correct accelerating fields are produced in the first
bubble

> Here we show that a QSA-PIC code can reliably describe plasma evolution at long timescales for cases where:

>~ Well-matched and/or slowly-evolving drivers are used — oy = €,/(rky)
> Plasma electron trapping is insignificant

> (Offers a boost in computational speedup + reduction in computational resource usage
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Can the QSA accurately describe extended timescales?
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> Preliminary benchmarking beyond the first bubble:

> Typically, comparisons of QSA-PIC codes ensure that correct accelerating fields are produced in the first
bubble

> Here we show that a QSA-PIC code can reliably describe plasma evolution at long timescales for cases where:
>~ Well-matched and/or slowly-evolving drivers are used — oy = €,/(rky)
> Plasma electron trapping is insignificant

> (Offers a boost in computational speedup + reduction in computational resource usage
> Advantages:

> 1. Allows long timescales to be simulated feasibly
> 2. Allows fast parameter scans of plasma evolution at short-medium timescales
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Extending to longer timescales with HIPACE++
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Extending to longer timescales with HIPACE++

> 1. Prolonged plasma electron oscillations for 100F QYIVAF g @ -
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Extending to longer timescales with HIPACE++

. . :':_-i - | - - | — | ; - ; | - - - E
> 1. Prolonged plasma electron oscillations for 100 AR @ .
: A | (AN ~ Ne [No] ]
many Plasma periods | | g ; e T
> 2. Facillitating a slow buildup of a central ion I~ | @ ]
I i [nol
channel ~100F 0 n2 1o 4 ]
100 80 60 40 20 0
time [ps]

Gasd  UNIVERSITY OF

«2) OXFORD




Extending to longer timescales with HIPACE++

> 1. Prolonged plasma electron oscillations for
many plasma periods

> 2. Faclilitating a slow buildup of a central ion
channel

Gasd  UNIVERSITY OF

«2) OXFORD

&
=
X

X [um]

100 _

Y I T

a1 ; ; I - - . i
0 2 4 @ y
( f/f’ffnfef[nO] ]
(Ll

AR ARREARRRCLARRRANR AN

—200F




Extending to longer timescales with HIPACE++

> 1. Prolonged plasma electron oscillations for
many plasma periods

> 2. Facillitating a slow buildup of a central ion
channel

> 3. Electron oscillation decay — energy from
the fields in the plasma wave is gradually
transferred to the electrons and ions in the
channel
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Extending to longer timescales with HIPACE++

> 1. Prolonged plasma electron oscillations for
many plasma periods

> 2. Faclilitating a slow buildup of a central ion
channel

> 3. Electron oscillation decay — energy from
the fields in the plasma wave is gradually
transferred to the electrons and ions in the
channel

> 4, The motion of the electrons follows the
motion of the ions — the plasma exhibits
guasi-neutrality
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Extending to longer timescales with HIPACE++
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Extending to longer timescales with HIPACE++

> 1. Prolonged plasma electron oscillations for
many plasma periods

> 2. Faclilitating a slow buildup of a central ion
channel

> 3. Electron oscillation decay — energy from
the fields in the plasma wave is gradually
transferred to the electrons and ions in the
channel

> 4, The motion of the electrons follows the
motion of the ions — the plasma exhibits
guasi-neutrality

Dense ion channel develops followed by

a rapid shock expansion — depleting axial
plasma density
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Extending to longer timescales with HIPACE++

> 1. Prolonged plasma electron oscillations for 100 F \ AN @ -
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> 3. Electron oscillation decay — energy from
the fields in the plasma wave is gradually
transferred to the electrons and ions in the
channel

> 4, The motion of the electrons follows the
motion of the ions — the plasma exhibits
guasi-neutrality

Dense ion channel develops followed by

a rapid shock expansion — depleting axial
plasma density
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Enabling qualitative scalings with ion species

> Considerations of ion mass
> FLASHForward demonstrated plasma
'ecovery in 63 ns in argon
> HALHF intends to use helium
> How would plasma motion scale?
> Dominated by the motion of the ions, so
one may assume it would scale with the
lon’s plasma frequency:

timescales 4 /m,
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'ecovery in 63 ns in argon
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> How would plasma motion scale?
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Enabling qualitative scalings with ion species

~ Considerations of ion mass 200 [ ——
> FLASHForward demonstrated plasma |

recovery in 63 ns in argon

> HALHF intends to use helium

> How would plasma motion scale?

> Dominated by the motion of the ions, so
one may assume it would scale with the
ion’s plasma frequency:
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Enabling qualitative scalings with ion species

> Considerations of ion mass 20— "
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> HALHF intends to use helium
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Understanding longer term effects by looking at the shorter term

200 175 150 125 100 75 50 25 0
time [ps]
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Understanding longer term effects by looking at the shorter term
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Understanding longer term effects by looking at the shorter term
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Understanding longer term effects by looking at the shorter term
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Understanding longer term effects by looking at the shorter term
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Understanding longer term effects by looking at the shorter term
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& | 2. Look at axial field
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Understanding longer term effects by looking at the shorter term
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Understanding longer term effects by looking at the shorter term
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> Plasma evolution is a series of causes and effects:
> Beam driver deposits energy into forming nonlinear plasma wave
> |ons slowly quench energy of the wave

> This depletes the wave with a {/ﬁ dependence — which has been predicted and olbserved:

> Spitsyn et al. Phys. Plasmas 25, 103103 (2018) & M. Turner et al., Phys. Rev. Lett. 134, 155001 (2025)
> As aresult, the ion spike peak ensues with the same +/m; dependence
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> Plasma evolution is a series of causes and effects:
> Beam driver deposits energy into forming nonlinear plasma wave
> |ons slowly quench energy of the wave

> This depletes the wave with a W dependence — which has been predicted and olbserved:

> Spitsyn et al. Phys. Plasmas 25, 103103 (2018) & M. Turner et al., Phys. Rev. Lett. 134, 155001 (2025)
> As aresult, the ion spike peak ensues with the same +/m; dependence

> Plasma evolution and recovery relies on the interdependence of many consecutive interlinked effects
> But so far, these were all only for a cold plasma...
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Extending to investigate temperature effects

> Expectations and effects
> At hot temperatures, expect random
thermal motion to damp the wave faster
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Extending to investigate temperature effects
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Extending to investigate temperature effects
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> See little changes at low temperatures - il
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Extending to investigate temperature effects

> Expectations and effects
> At hot temperatures, expect random
thermal motion to damp the wave faster
> See little changes at low temperatures
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Extending to investigate temperature effects
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Extending to investigate temperature effects

> Expectations and effects

> At hot temperatures, expect random
thermal motion to damp the wave faster

> See little changes at low temperatures

> See region of high temperature which
prolongs the plasma wave

> See expected quick damping at extreme
temperatures

> Suggests use of extreme temperature
plasma to be factored into designs?
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Conclusions

> Summary:
> [emperature effects are important for collider applications as they will deteriorate beam quality
> Relevant timescales cannot be captured by PIC codes so introduced Quasi-Static Approximation
> QSA allows multi-nanosecond simulations — extending beyond plasma quasi-neutrality
> Demonstrated effects of ion species on plasma wave decay

> He could be used to run high-repetition-rate machines like HALHF if a i/m; scaling is followed
> But plasma recovery timescales found to be dependent on initial plasma temperature

> Next steps:
> Address several lIimitations in HIPACE++ relevant to long timescales
> |onization, collisions, recombination etc.
> Extend plasma evolution to longer timescales to reproduce experimental data of plasma recovery from
FLASHForward
> Apply these methods to inform on future experiments at FLASHForward
> Apply these methods to inform on future baselines and modifications for the HALHF collider

Thank you!




Extra slide - simulation parameters & fits

Slide 2 simulations (HIPACE++)

Plasma: 1e16 /cma3, Singly ionised Ar

Driver parameters: 250 pC, 1 um transverse rms, 40 pm longitudinal rms
Witness parameters: 65 pC, 1 um transverse rms, 15 pm longitudinal rms

Slides 6-8 simulations (HIPACE++ & FBPIC)
Plasma density: 1e16 /cm3
Driver parameters: 600 pC, 5 um transverse rms, 50 pm longitudinal rms

Slide 9-12 simulations (HIPACE++ varying 9. ion mass and 10. temperature in Ar)
Plasma density: 1e16 /cm3

Driver parameters: 567 pC (nb/n0=100), 5 pm transverse rms, 50 um longitudinal rms

Fitting parameters
All ftsoftvs m_ lonareto:t=a"m_I1on™b + C
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Extra slide - simulation parameters & fits

Slide 2 simulations (HIPACE++)

Plasma: 1e16 /cma3, Singly ionised Ar

Driver parameters: 250 pC, 1 um transverse rms, 40 pm longitudinal rms
Witness parameters: 65 pC, 1 um transverse rms, 15 pm longitudinal rms

Slides 6-8 simulations (HIPACE++ & FBPIC)
Plasma density: 1e16 /cm3
Driver parameters: 600 pC, 5 um transverse rms, 50 pm longitudinal rms

Slide 9-12 simulations (HIPACE++ varying 9. ion mass and 10. temperature in Ar)
Plasma density: 1e16 /cm3
Driver parameters: 567 pC (nb/n0=100), 5 pm transverse rms, 50 um longitudinal rms

Fitting parameters Scan b T [eV] b
All fits of t vs m_ion are to: t = a*m_ion™b + C 1 0.37
lon mass 0.31 10 0.49
100 0.49
Wave decay 0.33 1000 058
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