Laser Pulse Tailoring For HOFI Waveguide Generation Anna Puchert PhD Student High Energy LPA Accelerator Division European Advanced Accelerator Conference Hotel Hermitage, Elba September 24th 2025 Deutsche Forschungsgemeinschaft (DFG) Projektnummer 531352484 # **Acknowledgements** MPL – Plasma Accelerator and Laser Group at DESY Fig: Marta Mayer (DESY) See our webpage at plasma.desy.de For a full list of teams and activities # Hydrodynamic Optical Field Ionized (HOFI) plasma waveguides Boosting energy of LPA electron beams - **Essential for Multi-GeV LPAs** - Extends high-intensity region of drive beam - Freestanding and resistent to damage Requires auxiliary beam and special optics - [1] R. J. Shalloo et al., PRE 97, 053203 (2018) - [2] R. J. Shalloo et al., PRAB 22, 041302 (2019) - C. G. Durfee & H. M. Milchberg, PRL 71, 2409 (1993) - [4] T. R. Clark & H. M. Milchberg, PRL 78, 2373 (1997) - [5] N. Lemos et al., Phys. Plasmas 20, 063102 (2013) - [6] A. Morozov et al., Phys. Plasmas 25, 053110 (2018) - [7] A. Picklsey et al., PRE 102, 053201 (2020) ## Existing optics for elongating focal region Focusing and elongation in one step ### Axioptics: Radially varying focusing forms elongated focal region - Axicon [1], - Axilens [2], - Axiparabola [5] ### Widely used for electron acceleration in HOFI waveguides Electron spectrum from **axicon** generated waveguide (adapted from [4]): Electron spectrum from **axiparabola** generated waveguide (adapted from [6]): #### Drawbacks: - **Custom fixed optics** - Relative pointing between beams [7] - [1] John H. McLeod, J. Opt. Soc. Am. 44, 592-597 (1954) - [2] N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 16, 523 (1991). - [3] Rob Shalloo, PhD Thesis, University of Oxford (2018) - [4] Picksley et al., Phys. Rev. Lett. 133, 255001 (2024) - [5] K. Oubrerie, I. A. Andriyash, R. Lahaye, et al., J. Opt. 24, 045503 (2022) - [6] Oubrerie, K., Leblanc, A., Kononenko, O. et al., Light Sci Appl 11, 180 (2022) - [7] Picksley et al., Phys. Rev. Lett. 131, 245001 (2023) - [8] B. Miao et al., PRX 12, 031038 (2022) # Separating focusing and elongation Can be performed by two spatially separated optical elements Off-Axis **Apply Aberrations** Beam In Parabolic Mirror Focal Region Deformable Mirror Focal position can be analytically calculated: $$f(r) = \frac{f_0}{1 - \frac{f_0}{kr}\phi'} - \frac{1}{2k} \left(\phi - \frac{r}{2}\phi'\right)$$ Common focusing optic for channel forming and drive beam can increase stability of guiding # **Propagation effects** How far apart can optics be separated See also: Poster session Wednesday, LASY: LAsers manipulations made eaSY, Rob Shalloo Transverse deformation of the beam due to aberrations should be small: Diffraction effects of unaberrated beam should be small ## Fixed phase optic for elongation Demonstration of an elongated focus using two spatially separated optics Thin optic, phase deviation of only a few wavelengths Using a combination of Z_2^0 and Z_4^0 such that $\phi \propto {\bf r}^{\rm 4}$) Elongation of focus matching with theory # Implementation into an existing LPA Demonstration of tunable focus elongation using a deformable mirror prior to compression Existing deformable mirror for wavefront flattening prior to final compressor (~34 m before OAP) - no changes to setup needed Using DM to add \mathbb{Z}_2^0 , \mathbb{Z}_4^0 and \mathbb{Z}_6^0 to elongate and flatten intensity distribution Simulation of beam transport showed no significant changes in phase profile #### LUX accelerator $$\max \left| \frac{z\phi'(r)}{wk} \right| = 0.1$$ # Implementation into an existing LPA Demonstration of tunable focus elongation using a deformable mirror prior to compression Rayleigh length of unperturbed beam 2.2 mm Using DM to add \mathbb{Z}_2^0 , \mathbb{Z}_4^0 and \mathbb{Z}_6^0 to elongate and flatten intensity distribution Elongation of focus to > 35 mm length matching with theory/simulations - Focal length limited by range of focal diagnostic In-situ tailoring of longitudinal intensity profile Transverse beam profile # Implementation at DESY HOFI@MAGMA See also: Mo, PS3: Manuel Kirchen – First electrons at KALDERA Tue, PS7: Soeren Jalas – Data Taking at High Repetition Rate #### CDR for PETRA IV plasma injector proposes concept for plasma source: #### Proof of principle experiments at few hundred MeV level Could use phase tailoring for elongating the focal region of the channel forming beam ### Flexible achromatic flying focus generation Control over the focal region – not only useful for HOFI Flying focus could be used to overcome dephasing in LPA [1] [2] [1] Palastro et al., Phys. Rev. Lett. 124, 134802 (2020) [2] Caizergues, et al., Nature Photonics, 14 (8), pp.475-479 (2020) [3] M. V. Ambat, J. L. Shaw, J. J. Pigeon, et al., Opt. Express 31, 31354 (2023) Could be exchanged by OAP + Deformable Mirror Axiparabola + retardance optic (i.e. echelon) Existing concept for exchanging retardance optic by deformable mirror + spatial light modulator [3] → All-adaptive-optic solution possible Elongated foci by design are flying foci → Further control by retardance optic ### Acknowledgements The Team at **DESY**. For more information see our paper: P. Blum, A. Puchert et al., 'Programmable Focal Elongation and Shaping of High-Intensity Laser Pulses using Adaptive Optics', submitted - Brussels Photonics, Department of Applied Physics and Photonics - ** Now at Lawrence Berkeley National Laboratory Contact: anna.puchert@desy.de With support from